Intermediate Quantitative Economics
with Python

Thomas J. Sargent & John Stachurski

Nov 25, 2025

Tools and Techniques

Modeling COVID 19
1.1 Overview,
1.2 The SIR Model
1.3 Implementation

1.4 Experiments

Linear Algebra

21 Overview
22 Vectors e
2.3 Matriceso e
2.4 Solving Systems of Equations
2.5 Eigenvalues and Eigenvectors

2.6 Further Topics

QR Decomposition

31 Overview
3.2 Matrix Factorization
3.3 Gram-Schmidt process
34 SomeCode
35 Example,
3.6 Using QR Decomposition to Compute Eigenvalues

3.7 @R and PCA

Circulant Matrices

41 OvVerview v it e e
4.2 Constructing a Circulant Matrix
4.3 Connection to Permutation Matrix
4.4 Examples with Python
4.5 Associated Permutation Matrix
4.6 Discrete Fourier Transform

Singular Value Decomposition (SVD)

5.1 Overview L
5.2 TheSetting
5.3 Singular Value Decomposition
5.4 Four Fundamental Subspaces
5.5 Eckart-Young Theorem

1.5 Ending Lockdown

27 EXercises

CONTENTS

5.6 Fulland Reduced SVD’s e
5.7 Polar DecompoSition i e e e e e e e e e e e e e e e e
5.8 Application: Principal Components Analysis (PCA) oL
59 Relationshipof PCAtoSVD 0 e
5.10 PCA with Eigenvalues and Eigenvectors
501 COonnections v v v v v i e e e e e e e e e e e e e e
5.2 EXEICISES . . o o v v v i e e e e e e e e e e e e e e e e
VARs and DMDs

6.1 First-Order Vector AUtOregressions« v v v v v v vt v it e e e e e e e e
6.2 Dynamic Mode Decomposition (DMD) e
6.3 Representation 1 e e e e e e e
6.4 Representation 2 L Ll e e e e
6.5 Representation 3 L L e e e e
6.6 Source for Some Python Code e
Using Newton’s Method to Solve Economic Models

Tl OVEIVIEW . . . oot e e e e e e e e e
7.2 Fixed point computation using Newton’s method o L.
7.3 Root-Finding in one dimensiono e e e e e e e e e e e e
7.4 Multivariate Newton's method L. oL
7.5 BXEICISES o o o e e e e e e

II Elementary Statistics
8 Elementary Probability with Matrices

8.1 Sketchof Basic CONCePLs v v i i e e e e e e e e e e e e e e e e e e e
8.2 What Does Probability Mean? e e e e e e e
8.3 Representing Probability Distributions oL
8.4 Univariate Probability Distributions
8.5 Bivariate Probability Distributions L. e
8.6 Marginal Probability Distributions e e e e e
8.7 Conditional Probability Distributions e e
8.8 Transition Probability Matrix oL e
8.9 Application: Forecastinga Time Series L e
8.10 Statistical Independence
8.11 Meansand VarianCes o ittt e e e e e e e e e e e e e e
8.12 Matrix Representations of Some Bivariate Distributions
8.13 A Continuous Bivariate Random Vector e
8.14 Sum of Two Independently Distributed Random Variables
.15 Coupling L e e e e
8.16 CopulaFunctions e e e
Some Probability Distributions

9.1 Some Discrete Probability Distributions
9.2 Geometric distribution L. e e e e e
9.3 Pascal (negative binomial) distribution Lo e
9.4 Newcomb-Benford distribution o L
9.5 Univariate Gaussian distribution L Lo e e e e e
9.6 Uniform Distribution e e e
9.7 A Mixed Discrete-Continuous Distribution L
9.8 Drawing a Random Number from a Particular Distribution

10 LLN and CLT

87
87
90
90
91
93
97

99
99
100
107
108
117

123

125
126
126
128
128
129
130
131
131
132
132
133
133
140
148
149
150

157
157
157
158
159
161
161
162
163

171

10.1 OVEIVIEW . . o v v o o e e e e e e e e e 171

10.2 Relationships o o o e e e e e e e e e e 172
103 LLN . e e e 172
104 CLT . . . e e e e 176
10.5 EXEICISES . . . v v v v e e e e e e e e e e e e 182
11 Two Meanings of Probability 189
TLL OVervIew o o o e e e e e e e e e e e e e e e e e e 189
11.2 Frequentist Interpretation oo e e e e e e 190
11.3 Bayesian Interpretationol e e e e e 196
11.4 Roleof aConjugate Prior o e e e e e e e 205
12 Multivariate Hypergeometric Distribution 207
12,1 OVEIVIEW . . o o v vt e e e e e e e e e e e e e e e e e e 207
12.2° The Administrator’s Problem 207
123 USAZE .« . v v o e e e e e e e e e e e e e 211
13 Multivariate Normal Distribution 217
I3.1 OVEIVIEW . . . o it e e e e e e e e e e e e e e e e e 217
13.2 The Multivariate Normal Distribution o e 218
13.3 Bivariate Example L e e e e 221
13.4 Trivariate Example e e 225
13.5 One Dimensional Intelligence (IQ) i e e e e e 226
13.6 Information as SUIPTiSe o v v vt i e e e e e e e e e e e e e e e e 230
13.7 Cholesky Factor Magic e 231
13.8 Math and Verbal Intelligence L 231
13.9 Univariate Time Series Analysis o oo i i i e 234
13.10 Stochastic Difference Equation e 239
13.11 Application to Stock Price Model e 241
13.12 Filtering Foundations o i i e e e e e e e e e 243
13.13 Classic Factor Analysis Model 247
13.14 PCA and Factor Analysis o 0 e e e e e 249
14 Fault Tree Uncertainties 255
T4AD OVEIVIEW . . . o o o o e e e e e e e e e e e e e 255
142 Lognormal distribution L e 256
14.3 The Convolution Property e 257
14.4 Approximating Distributions e e e e e e e e e e e e e 258
14.5 Convolving Probability Mass Functions 262
14.6 Failure Tree Analysis o e 264
147 Application L e 265
14.8 Failure Rates Unknown e e e 265
149 Waste Hoist Failure Rate 266
15 Introduction to Artificial Neural Networks 271
I5.1 OVEIVIEW . . . o v it e e e e e e e e e e e e e e 272
15.2 A Deep (but not Wide) Artificial Neural Network 272
15.3 Calibrating Parameters o e e e e e e e 273
15.4 Back Propagation and the ChainRule L o oL 274
155 Training Set. L e 275
15.6 Example 1 o e e 278
157 How Deep? o o i e e e e e e e e e e e e 279
15.8 Example 2 e e e e e e e 280
16 Randomized Response Surveys 283

16.1
16.2
16.3
16.4

OVEIVIEW . . o v o e o e e e e e e e e e e e e e e e e
Warner's Strategy o i e
Comparing Two Survey Designs o 0 o o i e e e e e e e
Concluding Remarks e

17 Expected Utilities of Random Responses

17.1
17.2
17.3
17.4
17.5
17.6
17.7

OVEIVIEW o o o e e e e e e e e e e
Privacy Measures e e e e e e e
Z00 Of CONCEPLS . . . v v v v o i e e e e e e e e e e e e
Respondent’s Expected Utility e
Utilitarian View of Survey Design o e e e e e
Criticisms of Proposed Privacy Measures o . o0 e e e
Concluding Remarks L e

III Bayes Law

18 Non-Conjugate Priors

18.1
18.2
18.3
18.4
18.5
18.6

Unleashing MCMC on a binomial likelihood
Prior distributions e
Implementation
Alternative prior distributions oL L e e
Posteriors via MCMC and VI. o o e
Non-conjugate prior distributions L e e e e e e e e e e

19 Posterior Distributions for AR(1) Parameters

19.1
19.2

PyMC Implementation 0t e e e e e e e e
Numpyro Implementation L e e e e e e e e

20 Forecasting an AR(1) Process

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9

A Univariate First-Order Autoregressive Process
Implementation e e e e e e e e e e e e e e e e
Predictive Distributions of Path Properties o
A Wecker-Like Algorithm e
Using Simulations to Approximate a Posterior Distribution
Calculating Sample Path Statistics L e e
Original Wecker Method o . e e e e e e e
Extended Wecker Method L e
ComPariSON« v v ot e

IV Statistics and Information

21 Statistical Divergence Measures

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9

OVEIVIEW o o o e
Primer on entropy, cross-entropy, KL divergence
Two Beta distributions: runningexampleo oL
Kullback-Leibler divergence i e e
Jensen-Shannon divergenceo e
Chernoff entropy o e e e e e e e e
Comparing divergence MeaSUIES v v« v v v v v v b e e e e e e e e e e e e e e e e e
KL divergence and maximum-likelihood estimation
Related lectures o L e e e e

22 Likelihood Ratio Processes

293
293
293
293
295
299
302
307

309

311
312
314
316
321
326
333

347
350
353

357
358
359
360
361
361
363
364
366
368

371

373
373
374
375
376
377
379
380
382
383

385

23

24

25

26

27

221 OVEIVIEW . . v v v o i et e e e e e e e e e e e e e
22.2 Likelihood Ratio Process o e e
22.3 Nature permanently draws fromdensity g Lo Lo
224 Peculiar Property o i i e e e e e e e e e e e
22.5 Nature permanently draws from density fo oL
22.6 Likelihood ratio teSt L L e e e e e e e
22.7 Hypothesis testing and classification L Lo e e e
22.8 Markovchains e e
229 Relatedlectures e e e
2210 EXEICISES . .« v v v v i i e

Heterogeneous Beliefs and Financial Markets

23.1 OVEIVIEW . . . o o ittt e e e e e e e e e e
23.2 Review: likelihood ratio processes o i e e e e
23.3 Blumeand Easley’s setting L e e e e
23.4 Nature and agents’ beliefs L e e
23.5 Asocialist risk-sharing arrangement L oL e e e e e e e e e e e e e e
23.6 Social planner’s allocation problem oL e
2377 I youTre SO SMATt, v v v v v it e
23.8 Competitive equilibrium prices e e e e
23,9 Simulations L L e
23.10 Related lectures L e
2311 EXEICISES . . o v v v i e e e e e e e e e e e e e e e

Likelihood Processes For VAR Models

241 OVEIVIEW . . . ittt e e e e e e e e e
242 VARmMoOdelsetup o o o e e e e
24.3 Likelihood ratio process o i it e e e e e e e e e e e e e
24.4 Example 1: two AR(1) Processes o v v v i e e e e e e
24.5 Example 2: bivariate VAR models L
24.6 Application: Samuelson multiplier-accelerator L. oo e

Mean of a Likelihood Ratio Process

251 OVEIVIEW . . . o vttt et e e e e e e e
25.2 Mathematical expectation of likelihoodratio Lo oL,
25.3 Importance sampling L. e e e
25.4 Selecting a sampling distribution Lo e
25.5 Approximating a cumulative likelihood ratio oL o
25.6 Distribution of sample mean e e e e e e e e e
25.7 Choosing a sampling distribution L e e e e e

A Problem that Stumped Milton Friedman

20.1 OVEIVIBW . . . v vttt e e et e e e e e e e e e e e
26.2 Sourceof the Problem
26.3 Neyman-Pearson formulation o e
26.4 Wald’s sequential formulation.o e e
26.5 Linksbetween A, Band a, 5. i e e e e e e e
26.6 SIMUlations e e e e e e e e e
26.7 Relatedlectures o o e e e e e e e
260.8 EXEICISES . . . ¢ v v v it e e e e e e e e e

A Bayesian Formulation of Friedman and Wald’s Problem

27.1 OVEIVIEW . . . ottt i e e e e e e e
27.2 A Dynamic Programming Approach oL
27.3 Implementation L L e e e e e e e e e e e e e e e e e

419
419
420
422
422
423
423
424
425
427
434
434

457
457
458
461
462
463
467

473
473
474
476
477
478
480
482

487
487
488
489
491
493
494
505
505

513
513
515
520

28

29

30

31

32

33

274 ANalysiS o e e

Exchangeability and Bayesian Updating

28.1 OVEIVIEW . . o v v v it e e e e e e e e e e e
28.2 Independently and Identically Distributed o
28.3 A Setting in Which Past Observations Are Informative
28.4 Relationship Between IID and Exchangeable
28.5 Exchangeability L e
28.6 Bayes Lawo
28.7 More Details about Bayesian Updating L e
28.8 AppendiX e e e e e e e e e e e
28.9 Sequels L e e e e e e e

Likelihood Ratio Processes and Bayesian Learning

2001 OVEIVIEW . . . o ittt e e e e e
29.2 The Setting o o i i e e e e e e e e e e e e e e e
29.3 Likelihood Ratio Processes and Bayes’ Law Lo oL,
29.4 Another timing protocol L. L e e e
29.5 Behavior of Posterior Probability {r, } Under Subjective Probability Distribution
29.6 Initial Prior is Verified by Paths Drawn from Subjective Conditional Densities
29.7 Drilling Down a Little Bit 0 e e e e e
29.8 Related Lectures L e

Incorrect Models

30.1 OVEIVIEW . . . L o e e e
30.2 Sampling from Compound Lottery H L
303 Type L AZent o o o o e e e e e e
30.4 What a type 1 Agent Learns when Mixture H GeneratesData
30.5 Kullback-Leibler Divergence Governs Limitof 7r,
306 Type2 AZENt . . . v v v e e e e e e e e e e e e e e e e
30.7 ConcludingRemarks e
30.8 EXEICISES . . . v v v i i e e e e e e e e e e e e e e

Bayesian versus Frequentist Decision Rules

311 OVEIVIEW . . . o oo ot e e e e e
312 Setup . . . v i e e e e e e e e
31.3 Frequentist Decision Rule e
31.4 Bayesian DecisionRule e e e
31.5 Was the Navy Captain’s Hunch Correct? o 0 i ittt e e e e e
31.6 More Details o e
31.7 Distribution of Bayesian Decision Rule’s Time to Decide
31.8 Probability of Making Correct Decision e
31.9 Distribution of Likelihood Ratios at Neyman-Pearson’s¢

Linear Programming

Optimal Transport

32,1 OVEIVIEW . . . o vt it e e e e e e e e e e e e e e e e e
32.2 The Optimal Transport Problem
32.3 The Linear Programming Approach L e
324 TheDual Problem e
32.5 The Python Optimal Transport Package

Von Neumann Growth Model (and a Generalization)

529
529
530
531
532
533
533
534
537
544

545
545
546
547
552
555
562
563
564

565
565
568
570
571
573
576
578
579

583
583
584
587
593
600
602
602
606
608

611

613
613
614
615
622
624

629

vi

33.1
332
333
334
335

NOAtioN oo e e e e e e
Model Ingredients and ASSUMPLONS v v v v v e e e e e e e e e e e e
Dynamic Interpretation L e e e e e
Duality e e
Interpretation as Two-player Zero-sum Game oot e e

VI Introduction to Dynamics

34 Finite Markov Chains

34.1
342
343
344
34.5
34.6
34.7
34.8
349

OVEIVIEW o o it e e e e e e e e e
Definitions L e e e e e e e
Simulationo e e e e e e
Marginal Distributions L. e e e e
Irreducibility and AperiodiCity o L e e e e e e e e e e
Stationary Distributions e e e e e e e e e e e
Ergodicity e e e e
Computing EXpectations oL e e e e e e e e e e
EXErCises o o i e e

35 Inventory Dynamics

35.1
352
353
354

OVEIVIEW o o i e
Sample Paths L L e e
Marginal Distributions e e e e e e e e e e e e e e
EXEICiSes o o e e e

36 Linear State Space Models

36.1
36.2
36.3
36.4
36.5
36.6
36.7
36.8

OVEIVIEW o o o e
The Linear State Space Model e
Distributions and Momentso e
Stationarity and Ergodicity e e e
NoiSy ObServations« v v vt vt e e e e e e e e e e e e e
Prediction e
Code
EXErciSes o o o

37 Samuelson Multiplier-Accelerator

37.1
37.2
373
37.4
37.5
37.6
37.7
37.8
37.9

OVEIVIEW o o o
Details e
Implementation L. e e e e e e e e e
Stochastic shocks L e e
Government Spending i e e e e e e e e e e e e e e e e e e
Wrapping everything into aclass 0 e e e e
Using the LinearStateSpace class e
Pure multiplier model e e
SUMMArY oo e e e e e e e e e e e e e

38 Kesten Processes and Firm Dynamics

38.1
38.2
383
38.4
38.5

OVEIVIEW . . . v v o e
Kesten Processes e e e e e e e e
Heavy Tails o e e e e e e e e e e
Application: Firm Dynamics L e e e e e e e
EXercises e e e e e e e e e e e e

39 Wealth Distribution Dynamics

647

649
649
650
652
654
656
659
663
664
665

673
673
674
676
680

685
685
686
692
699
704
705
706
706

709
709
711
714
723
725
727
732
738
741

743
743
744
747
749
750

757

vii

40

41

3901 OVEIVIEW . . o v v v o et e e e e e e e e e e e e e e e e e e e
39.2 Lorenz Curves and the Gini Coefficient i
39.3 A Model of Wealth Dynamics e e e
39.4 Implementationol e e e
39.5 ApPlications e e e e e e e e
390.6 EXEICISES . . v v v v o et e

A First Look at the Kalman Filter

40.1 OVEIVIEW o vt e e e e e e e e e e e
40.2 TheBasicIdea e e e e
40.3 CONVEIZENCE . . v v v v v v e
40.4 Implementation L. e
40.5 EXEICISES . . . v v v i o e e e e e e e e e e e e

Another Look at the Kalman Filter

41.1 Aworkersoutput e e e e e e e e
41.2 A firm’s wage-setting policy e e e e e e e e
41.3 A state-space representation u i u e e e e e e e e e e e e
41.4 AnInnovations Representation it e e e e e e e e e e e e
41.5 Some Computational EXperiments 0 0 i e e e e e e e e
41.6 Future EXtensions e e e e e

VII Search

42

43

44

Job Search I: The McCall Search Model

42,1 OVEIVIEW . . . o v i e e e e e e e e e e e e e e e
42.2 The McCall Model e e e e e e e
42.3 Computing the Optimal Policy: Take 1,
42.4 Computing an Optimal Policy: Take 2 L
42.5 Continuous Offer Distribution e e
42.6 Volatility e e e e e
427 EXCICISES . . v v v i v i e e e e e e e e e e e e e e e e

Job Search II: Search and Separation

431 OVEIVIEW .« v v v v vt e e e e e e e e e e e e e e e
432 Themodel e e e e
43.3 Solvingthemodel L e e e e e e e
434 Code e e e e e e
43.5 Asimplifying transformation L L e e e e e e e
43.6 Implementation L. e e e e e
437 Impact of parameters i e
43.8 EXEICISES . . . v v v v e e e e e e e e e e e

Job Search III: Search with Separation and Markov Wages

44.1 Model Setup o . e e e e e e e e e e e e e e e e
442 Codeo e e
443 TImprovingefficiency e
44.4 Sensitivity analysis oL o e e e e e e e e e e e e e
44.5 Employmentsimulation Lol e e e e
44.6 Ergodic Property v v v i i e
447 Cross-sectional analysSiso e e e e e e e e e e e e e e e
44.8 Lower unemployment compensation (c=0.5) oL oo
449 EXEICISES . « v v v v v v e

773
773
774
782
782
783

791
792
792
793
794
796
805

807

809
809
810
812
820
822
824
829

833
833
834
835
836
840
841
842
845

viii

45

46

47

48

49

50

Job Search IV: Fitted Value Function Iteration

45.1 OVEIVIEW . . v . v i v e e e e e e e e e e e e e e e e
452 Model e e e
453 Solutionmethod
454 Tmplementation e
45.5 Simulation L L e e e e
45.6 EXCICISES . . v . v v i i e e e e e e e e e

Job Search V: Persistent and Transitory Wage Shocks

46.1 OVEIVIEW . . . v v i o e e e e e e e e e e e e e e e e
46.2 Themodel e
46.3 Implementation L e
46.4 Unemploymentduration
46.5 EXEICISES . . « v v v v v i e e e e e e

Job Search VI: Modeling Career Choice

471 OVEIVIEW . . . v v i e e e e e e e e e e e e e e e e e e
472 Model e e
47.3 Implementation e e e e e e e
474 EXCICISES . . v v v i v i e e e e e e e e e e e e e e e

Job Search VII: On-the-Job Search

48.1 Overview e
482 Modelo
483 Implementation oL
48.4 SolvingforPolicies Lo
48.5 EXErCISes . . . o v v v v i i e e

Job Search VIII: Search with Learning

49.1 OVErVIEW v o i e e e e e e
492 Model oL
49.3 Take 1: Solutionby VFI
49.4 Take 2: A More Efficient Method
49.5 Another Functional Equation
49.6 Solvingthe RWFE
49.7 Implementationl
49.8 EXEICISES . . « v v v v v e e e e e e
49.9 Solutions
49.10 Appendix A L e e e e
490.11 Appendix B L
49.12 Examples

Job Search IX: Search with Q-Learning

501 OVerview o i e e e e e e e e
50.2 Reviewof McCallModel
50.3 TImplied Quality Function ¢
50.4 From Probabilities to Samples,
505 Q-Learning e e e e e
50.6 Employed Worker Can't Quit
50.7 Possible Extensionso

VIII Introduction to Optimal Savings

51

Optimal Savings I: Cake Eating

869
869
870
870
873
878
885

889
889
890
891
895
897

899
899
900
902
907

913
913
914
915
918
920

925
925
926
930
935
935
935
936
937
937
939
941
945

957
957
958
961
962
963
971
972

973

975

52

53

54

55

56

57

58

59

ST.1 OVEIVIEW . . . o o v o e e e e e e e e e e e e e e e e 975
51.2 Themodel e e 976
51.3 Thevalue function e e e e 977
51.4 Theoptimal policy e 979
51.5 The Eulerequation i i i i i e e e e e 980
51.6 EXEICISES . . . v v v i v o et e e e e e e e e e e e e 983
Optimal Savings II: Numerical Cake Eating 987
52.1 OVEIVIEW . . . o o i i i e e e e e e e 987
52.2 Reviewingthe Model e 988
52.3 Value Function Iteration e e e 988
524 EXEICISES .+ « v v v v v e 997
Optimal Savings III: Stochastic Returns 1003
53.1 OVEIVIEW . . . v v o e e e e e e e e e e e e e e e e 1003
53.2 TheModel e e e e e e 1004
533 Computation e e e e e e e e 1008
534 EXEICISES . . . v v v i i i e e e e s 1016
Optimal Savings I'V: Time Iteration 1019
541 OVEIVIEW . . v o i v i i e 1019
542 The Euler Equation L. 1020
54.3 TImplementation e e e e e e e e e e e e e e e e e e 1022
544 EXEICISES © v v v v v v e e e e e e e e e e e e e e e e 1028
Optimal Savings V: The Endogenous Grid Method 1031
55.1 OVEIVIEW . . . o o v o e e e e e e e e e e e e e e e e e 1031
552 Keyldea o e e e e 1032
55.3 Implementation L e e e e e e e e e e e e e e e 1033
Optimal Savings VI: EGM with JAX 1039
56.1 OVEIVIEW . . . o v i o e e e e e e e e e e e e e e e e e e e 1039
56.2 Implementation L L e e e e e e e e e e e e e e e e 1039
56.3 EXEICISES o v i e e e e e e e e e e e e e 1044
IX Household Problems 1049
The Income Fluctuation Problem I: Discretization and VFI 1051
57.1 OVEIVIEW . . . o o v o e i e e e e e e e e e e e e e e e e 1051
572 SetUp . . o e e e 1052
573 Code e 1053
574 EXEICISES . . . v v v i v i e e e e e e e e e e e e e e 1057
The Income Fluctuation Problem II: Optimistic Policy Iteration 1061
58.1 OVEIVIEW o i i e e 1061
58.2 Model and Primitives e e e e e 1061
58.3 Operators and Policies o L e e e e e e e e 1062
58.4 Value Function Iteration e e 1064
58.5 Optimistic Policy Iteration e 1064
58.6 Timing CompariSOn e e e e e e 1065
58.7 EXEICISES . . . v o v i e i e e e e e e e e e e 1068
The Income Fluctuation Problem III: The Endogenous Grid Method 1071
50.1 OVEIVIEW o i o i e 1071

59.2 The Household Problem
59.3 Computation v v e e e e e e e e e e e e e e e e e e
59.4 NumPy Implementation
59.5 JAXImplementationl
59.6 Simulation e e
59.7 EXEICISES . . . v v v i e e e e e e e

60 The Income Fluctuation Problem IV: Stochastic Returns on Assets

60.1 OVEIVIEW o vt i e e e e e
60.2 The Savings Problem
60.3 Solution Algorithm e
60.4 Numba Implementation e
60.5 JAXImplementation e
60.6 EXErCises o o v it e e e e e e e e

X LQ Control

61 LQ Control: Foundations

61.1 OVErVIEW o o i e e e e e e e
61.2 Introduction. e e e e
61.3 Optimality - Finite Horizon
61.4 Implementation e e
61.5 Extensions and Comments e
61.6 Further Applications o . i i i e e
61.7 EXEICISES . . « v v v e i e e e e e e e e e e e e e e e e e

62 Lagrangian for LQ Control

62.1 OVEIVIEW o vt i e e e e e
62.2 Undiscounted LQ DPProblem
62.3 Lagrangian e e e e e e e e e e
62.4 State-Costate Dynamics L
62.5 Reciprocal Pairs Property e
62.6 Schur decomposition e
62.7 Application e e e e e e e e
62.8 Other Applications o . e e e
62.9 Discounted Problems

63 Eliminating Cross Products

63.1 OVErVIEW o i e e e e e e e e e
63.2 Undiscounted Dynamic Programming Problem
63.3 KalmanFilter
63.4 Dualitytable e e e

64 The Permanent Income Model

64.1 OVerview
64.2 The Savings Problem e
64.3 Alternative Representations oo
64.4 Two Classic Examples
64.5 FurtherReading
64.6 Appendix: The Euler Equation

65 Permanent Income II: LQ Techniques

65.1 OVEIVIEW . . . v v v o i e e e e e e e e e e e e e
65.2 Setup e e e e e e e e

Xi

65.3 The LQ Approach e e e e e 1180

65.4 TImplementation L e e e e e e e e e e e e e e e e e 1181
65.5 Two Example Economies 0 0 e e e e e e e e 1184
66 Production Smoothing via Inventories 1195
60.1 OVEIVIEW o o v it e et e e e e e e e e 1195
66.2 Example I o e e e e e e 1200
66.3 Inventories Not Useful e 1201
66.4 Inventories Useful but are Hardwired to be Zero Always 1201
60.5 Example 2 e e e e e e e e e e e 1203
66.6 Example 3 e e e e e e e e e e 1204
66.7 Exampled e e e e e e e 1205
66.8 Example5 L e 1207
66.9 Example 6 1208
60.10 EXErCiSes o v v v e e 1211
XI Optimal Growth 1217
67 Cass-Koopmans Model 1219
67.1 OVEIVIEW o it e e e e e e e e e e e e e e e e 1219
67.2 TheModel e 1220
67.3 Planning Problem L 1221
67.4 Shooting Algorithm e e e e e e e e 1225
67.5 Setting Initial Capital to Steady State Capital o i 1229
67.6 A Turnpike Property e 1231
67.7 A Limiting Infinite Horizon Economy oL oo oo 1234
67.8 Stable Manifold and Phase Diagram L e 1235
67.9 Concluding Remarks e e e e e e e e e 1237
68 Cass-Koopmans Competitive Equilibrium 1241
68.1 OVEIVIEW o v v it e e e e e e e 1241
68.2 Review of Cass-Koopmans Model e 1242
68.3 Competitive Equilibrium e e e 1243
68.4 Market Structure e e e e 1244
68.5 Firm Problem L e 1244
68.6 Household Problem e 1245
68.7 Computing a Competitive Equilibrium 1247
68.8 Yield Curves and Hicks-Arrow Prices L 1255
69 Cass-Koopmans Model with Distorting Taxes 1257
69.1 OVEIVIEW o vttt et e e e e e e e e e 1257
69.2 The Economy e e e e e e e e e 1257
69.3 Equilibrium oL e e e e e e 1259
69.4 No-arbitrage Condition L e 1259
69.5 Household’s First Order Condition ittt 1260
69.6 Computing Equilibria e e e e e e e 1261
69.7 Python Code e e e e e 1261
69.8 Some functional forms L. L L e e e e e 1265
69.9 Computation L e e e e e 1266
69.10 Exogenous growth 1289
70 Two-Country Model with Distorting Taxes 1301
TOI OVEIVIEW . . . ot ot e e e e e e e e e e e e e e e e e 1301
70.2 A Two-Country Cass-Koopmans Model 1301

Xii

71

Transitions in an Overlapping Generations Model

71.1 Introduction e
TL2 Setting o v i i e e e e e e e e e e
71.3 Production e
T14 Government. v v v v i it e e e e e e e
71.5 Activities in Factor Markets
71.6 Representative firm’s problem, .
71.7 Individuals problems o
71.8 Equilbrium oL
T19 Nextsteps o v v it it e
71.10 Closed form solution v v vt st
71.11 A computational strategy e

XII Multiple Agent Models

72

73

74

75

76

77

A Lake Model of Employment and Unemployment

T2.1 OVEIVIEW . . . o v e e e e e e e e e e e e e e
722 Themodel e e
72.3 Implementation e e e e
72.4 Dynamics of an individual worker o000
725 EXEICISES . . v v v vt i i e e e e e e e e e e

Lake Model with an Endogenous Job Finding Rate

T3.1 OVEIVIEW . . v v i e e e e e e e e e e e e e e e
732 SetUp . . . o o e e
73.3 Fiscalpolicy e
T34 EXEICISES . . v o v i v i i e e e e e e e

Rational Expectations Equilibrium

TAT OVervIeW ot e e e e e e e e
74.2 Rational Expectations Equilibrium
74.3 Computing an Equilibrium,
T44 EXEICISeS . . . v v v v v v it i e e e e e

Stability in Linear Rational Expectations Models

T5.1 Overview e
75.2 Linear Difference Equations
75.3 TIlustration: Cagan's Model
754 SomePythonCode
75.5 Alternative Code
75.6 Another Perspective e
75.7 Log money Supply Feeds Back on Log Price Level
75.8 Big P, Little p Interpretation
759 FunwithSymPy oo

Markov Perfect Equilibrium

76.1 Overview e
76.2 Background
76.3 Linear Markov Perfect Equilibria
76.4 Application e e e e e e
76.5 EXercises

Uncertainty Traps

TT.1 OVEIVIEW . . . v v o v e e e e e e e e e e e e e e e

............... 1318
............... 1319

78

79

XIII Asset Pricing and Finance

80

81

82

83

77.2 TheModel e e
77.3 Implementation e e e e e e e e e e e e e e e e e e e
T7.4 Results o e e e e e e e
T7.5 EXEICISES . . . v o i o i e e e e e e e e e e e e e e e

The Aiyagari Model

TB.1 OVerview e e
782 The Economy i e e e e e e e e e
783 Implementation L. e e e e e e
T84 EXEICISES . « v v v v v it e e e e e e e e e e e e e e

A Long-Lived, Heterogeneous Agent, Overlapping Generations Model

TO.1 OVEIVIEW . . . v vttt e et e e e e e e e e e
79.2 EnVIrONMENT o i vttt e e e e e e e e e e e e e e e e e
793 Production e e e e e e
794 GOVEINMENt v vt ittt e e e e e e e e e e e e e e e e
79.5 Activities in factor markets oL L oL L e e e
79.6 Representative firm’s problem e
79.7 Households’ problems e e e e e e e e e e e
79.8 Population dynamics oL e e e e e e e e e e e e e e e e e
79.9 Equilibrium e e e e e e e e e e
79.10 Implementation L e e e e e e
79.11 Computingasteady state
79.12 Transition dynamicCs v vt i e e e e e e e e e e e e e e
79.13 Experiment 1: Immediate tax Cut o ot e e e e e e e e e e e e e
79.14 Experiment 2: Preannounced taX CUL v v v v it e e e e e e e e e e e e e e

Asset Pricing: Finite State Models

80.1 OVEIVIEW ot e e e e e e e e
80.2 PricingModels e e e e e e e e e e e e e
80.3 Pricesinthe Risk-Neutral Case 0t i i i e e e e e e e e e e e e e
80.4 Risk Aversion and Asset Prices e e e e e e e e e e e
80.5 EXEICISES o o i i e e e e e e e e e e e

Competitive Equilibria with Arrow Securities

81.1 Introduction o i e e e e e e e e e e e e e
81.2 Thesetting« o i e e e e e e e e e e e e e e e e
81.3 Recursive Formulation L e e
81.4 State Variable Degeneracy e e e e e e e e e
81.5 Markov Asset Prices oL e e
81.6 General Equilibrium oL e
81.7 Finite Horizon e e e e e e
81.8 PythonCode e e e
81.9 Examples o e e e e e e e e e e e e

Heterogeneous Beliefs and Bubbles

2.1 OVEIVIEW . . v v v e
82.2 Structure of the Model e e e e e
82.3 Solvingthe Model L e e e e e e

Speculative Behavior with Bayesian Learning
83.1 OVEIVIEW i i it et e e e e e e e e e e e e

Xiv

83.2 Structure of the model L 1556
83.3 Informationand beliefs e 1557
83.4 Source of heterogeneous priorso e e e e e e e e 1557
83.5 Betapriors e e e e e 1558
83.6 Market prices withlearning L e 1559
83.7 TwoTraders o v i i i e e e e e e e e e e e e e e e e e 1560
83.8 Concludingremarks e e e e e e e e e e e e e e 1567
83.9 EXEICISE v i it e e e e e e e e 1567
XIV Data and Empirics 1571
84 Pandas for Panel Data 1573
4.1 OVEIVIEW . . v o v v i e 1573
84.2 Slicingand Reshaping Data e e e 1574
84.3 Merging Dataframes and Filling NaNs e 1579
84.4 Grouping and Summarizing Data L e 1584
84.5 Final Remarks e e e e e 1590
84.6 EXEICISES . . . v v v i i e i e e e e e e e e e e e e e e e 1590
85 Linear Regression in Python 1595
85.1 OVEIVIEW o e e e e e e e e e e e e e e e 1595
85.2 Simple Linear Regression o e e e 1596
85.3 Extending the Linear Regression Model 1602
85.4 Endogeneity e e e e e e e e e e e e e e e 1604
85.5 Summary L e e e e e e e e 1608
85.6 EXEICISeS o e e e e e e e e e e e e e e e 1608
86 Maximum Likelihood Estimation 1613
8O.1 OVEIVIEW i i e e e e e e e e e e e e e 1613
86.2 Setupand assUMPLioNS b it e e e e e e e e e e e e e e e e e e 1614
86.3 Conditional distributions e e e e e e e e e e e e e e 1618
86.4 Maximum likelihood estimation e e 1619
86.5 MLE with numerical methods L e e e 1621
86.6 Maximum likelihood estimation with statsmodels 1627
86.7 Summary e e e e 1631
860.8 EXEICISES . . . v v v i i e 1632
XV Auctions 1635
87 First-Price and Second-Price Auctions 1637
87.1 First-price sealed-bid auction (FPSB) 1637
87.2 Second-price sealed-bid auction (SPSB) 1638
87.3 Characterization of SPSBauction e 1638
87.4 Uniform distribution of private values e 1639
87.5 Setup . . . o o e e 1639
87.6 Firstprice sealed bidauction oL 1639
87.7 Second price sealed bidauction L e 1640
87.8 Pythoncode e e 1640
87.9 Revenue equivalence theorem e e e e e e e 1642
87.10 Calculation of bid price in FPSB e 1644
87.11 xZ Distribution e 1646
87.12 Code SUMMATY v v v v v e 1649
87.13 References e e e e e e e 1653

XV

88 Multiple Good Allocation Mechanisms 1655

88.1 OVEIVIEW . . . o i it i i i e e e e e e e e e e 1655
88.2 Ascending Bids Auction for Multiple Goods oL oo 1655
88.3 ABenevolent Planner L. e 1656
88.4 Equivalence of Allocationsl e 1656
88.5 Ascending Bid Auction e e 1656
88.6 Pseudocode L e e e 1657
88. 7 AnExample e e e e e e e 1659
88.8 APythonClass e e e e e 1667
88.9 Robustness Checks e e e e e e e e e e e 1675
88.10 A Groves-Clarke Mechanism e i e e e e e e e 1687
88.11 An Example Solved by Hand e e e e 1688
88.12 Another Python Class e e e e e e e e e 1691
XVI Other 1699
89 Troubleshooting 1701
89.1 Fixing Your Local Environment e 1701
89.2 ReportinganIssue L e e e e e e e e e e e e 1702
90 References 1703
91 Execution Statistics 1705
Bibliography 1709
Proof Index 1717
Index 1719

Intermediate Quantitative Economics with Python

This website presents a set of lectures on quantitative economic modeling.
» Tools and Techniques

Modeling COVID 19

- Linear Algebra
— OR Decomposition

Circulant Matrices

Singular Value Decomposition (SVD)
VARs and DMDs

— Using Newton’s Method to Solve Economic Models
» Elementary Statistics
— Elementary Probability with Matrices
— Some Probability Distributions
- LLN and CLT
— Two Meanings of Probability
— Multivariate Hypergeometric Distribution
— Multivariate Normal Distribution
— Fault Tree Uncertainties
— Introduction to Artificial Neural Networks
— Randomized Response Surveys
— Expected Utilities of Random Responses
» Bayes Law
— Non-Conjugate Priors
— Posterior Distributions for AR(1) Parameters
— Forecasting an AR(1) Process
« Statistics and Information
— Statistical Divergence Measures
- Likelihood Ratio Processes
- Heterogeneous Beliefs and Financial Markets
- Likelihood Processes For VAR Models
— Mean of a Likelihood Ratio Process
- A Problem that Stumped Milton Friedman
— A Bayesian Formulation of Friedman and Wald’s Problem
— Exchangeability and Bayesian Updating
- Likelihood Ratio Processes and Bayesian Learning
- Incorrect Models

— Bayesian versus Frequentist Decision Rules

CONTENTS 1

Intermediate Quantitative Economics with Python

 Linear Programming

Optimal Transport

Von Neumann Growth Model (and a Generalization)

« Introduction to Dynamics

Finite Markov Chains

Inventory Dynamics

Linear State Space Models
Samuelson Multiplier-Accelerator
Kesten Processes and Firm Dynamics
Wealth Distribution Dynamics

A First Look at the Kalman Filter

Another Look at the Kalman Filter

e Search

Job Search I: The McCall Search Model

Job Search II: Search and Separation

Job Search III: Search with Separation and Markov Wages
Job Search 1V: Fitted Value Function Iteration

Job Search V: Persistent and Transitory Wage Shocks

Job Search VI: Modeling Career Choice

Job Search VII: On-the-Job Search

Job Search VIII: Search with Learning

Job Search IX: Search with Q-Learning

« Introduction to Optimal Savings

Optimal Savings I: Cake Eating

Optimal Savings II: Numerical Cake Eating
Optimal Savings III: Stochastic Returns

Optimal Savings IV: Time Iteration

Optimal Savings V: The Endogenous Grid Method
Optimal Savings VI: EGM with JAX

¢ Household Problems

The Income Fluctuation Problem I: Discretization and VFI
The Income Fluctuation Problem II: Optimistic Policy Iteration
The Income Fluctuation Problem Ill: The Endogenous Grid Method

The Income Fluctuation Problem IV: Stochastic Returns on Assets

« LQ Control

LQ Control: Foundations

CONTENTS

Intermediate Quantitative Economics with Python

Lagrangian for LQ Control

Eliminating Cross Products
— The Permanent Income Model
— Permanent Income II: LQ Techniques
— Production Smoothing via Inventories
o Optimal Growth
- Cass-Koopmans Model

— Cass-Koopmans Competitive Equilibrium

Cass-Koopmans Model with Distorting Taxes

Two-Country Model with Distorting Taxes

Transitions in an Overlapping Generations Model
o Multiple Agent Models
— A Lake Model of Employment and Unemployment
— Lake Model with an Endogenous Job Finding Rate
— Rational Expectations Equilibrium
— Stability in Linear Rational Expectations Models
- Markov Perfect Equilibrium
- Uncertainty Traps
— The Aiyagari Model
— A Long-Lived, Heterogeneous Agent, Overlapping Generations Model

« Asset Pricing and Finance

Asset Pricing: Finite State Models

Competitive Equilibria with Arrow Securities

Heterogeneous Beliefs and Bubbles

— Speculative Behavior with Bayesian Learning
« Data and Empirics

- Pandas for Panel Data

— Linear Regression in Python

— Maximum Likelihood Estimation
 Auctions

— First-Price and Second-Price Auctions

— Multiple Good Allocation Mechanisms
o Other

— Troubleshooting

— References

— Execution Statistics

CONTENTS 3

Intermediate Quantitative Economics with Python

4 CONTENTS

Part I

Tools and Techniques

CHAPTER
ONE

MODELING COVID 19

Contents

o Modeling COVID 19
— Overview

— The SIR Model

Implementation

— Experiments

Ending Lockdown

1.1 Overview

This is a Python version of the code for analyzing the COVID-19 pandemic provided by Andrew Atkeson.
See, in particular
« NBER Working Paper No. 26867
o COVID-19 Working papers and code
The purpose of his notes is to introduce economists to quantitative modeling of infectious disease dynamics.
Dynamics are modeled using a standard SIR (Susceptible-Infected-Removed) model of disease spread.
The model dynamics are represented by a system of ordinary differential equations.
The main objective is to study the impact of suppression through social distancing on the spread of the infection.
The focus is on US outcomes but the parameters can be adjusted to study other countries.

We will use the following standard imports:
import matplotlib.pyplot as plt

import numpy as np
from numpy import exp

We will also use SciPy’s numerical routine odeint for solving differential equations.

from scipy.integrate import odeint

https://sites.google.com/site/andyatkeson/
https://www.nber.org/papers/w26867
https://sites.google.com/site/andyatkeson/home?authuser=0

Intermediate Quantitative Economics with Python

This routine calls into compiled code from the FORTRAN library odepack.

1.2 The SIR Model

In the version of the SIR model we will analyze there are four states.
All individuals in the population are assumed to be in one of these four states.
The states are: susceptible (S), exposed (E), infected (I) and removed ®.
Comments:

» Those in state R have been infected and either recovered or died.

» Those who have recovered are assumed to have acquired immunity.

« Those in the exposed group are not yet infectious.

1.2.1 Time Path

The flow across states follows the path S — F — I — R.
All individuals in the population are eventually infected when the transmission rate is positive and i(0) > 0.
The interest is primarily in

« the number of infections at a given time (which determines whether or not the health care system is overwhelmed)
and

« how long the caseload can be deferred (hopefully until a vaccine arrives)
Using lower case letters for the fraction of the population in each state, the dynamics are
50 =80 o0l
) s(t)i(t) — oe(t) (1.1)
() = oe(t) —7i(t)
In these equations,
o [(t) is called the transmission rate (the rate at which individuals bump into others and expose them to the virus).
« 0o is called the infection rate (the rate at which those who are exposed become infected)
v is called the recovery rate (the rate at which infected people recover or die).
« the dot symbol y represents the time derivative dy/dt.
We do not need to model the fraction r of the population in state R separately because the states form a partition.
In particular, the “removed” fraction of the populationisr =1 —s —e — .
We will also track ¢ = ¢ + r, which is the cumulative caseload (i.e., all those who have or have had the infection).

The system (1.1) can be written in vector form as
T = F(x,t), x = (s,e,1) (1.2)

for suitable definition of F' (see the code below).

8 Chapter 1. Modeling COVID 19

Intermediate Quantitative Economics with Python

1.2.2 Parameters

Both ¢ and ~y are thought of as fixed, biologically determined parameters.
As in Atkeson’s note, we set
o 0 = 1/5.2 to reflect an average incubation period of 5.2 days.
o v = 1/18 to match an average illness duration of 18 days.
The transmission rate is modeled as
o [(t) :== R(t)y where R(t) is the effective reproduction number at time ¢.

(The notation is slightly confusing, since R(t) is different to R, the symbol that represents the removed state.)

1.3 Implementation

First we set the population size to match the US.

pop_size = 3.3e8

Next we fix parameters as described above.

vy =1/ 18
=1/ 5.2

Now we construct a function that represents F' in (1.2)

def F(x, t, R0=1.6):

mmn

Time derivative of the state vector.

* x 1s the state vector (array_like)
* t is time (scalar)
* RO is the effective transmission rate, defaulting to a constant

mrn

s, e, i =x

New exposure of susceptibles

B = RO(t) * y if callable(R0O) else RO * y

ne =B * s * i

Time derivatives

ds = - ne
de = ne — o * e
di = o0 * e -y * i

return ds, de, di

Note that RO can be either constant or a given function of time.

The initial conditions are set to

initial conditions of s, e, 1
1.0 = 1le-7
(continues on next page)

1.3. Implementation 9

Intermediate Quantitative Economics with Python

In vector form the initial condition is

x 0 =s_0, e 0, i_0

We solve for the time path numerically using odeint, at a sequence of dates t_vec.

def solve_path (RO, t_vec, x_init=x_0):

mmn

Solve for i(t) and c(t) via numerical integration,
given the time path for RO.

mrmn

G = lambda x, t: F(x, t, RO)
s_path, e_path, i_path = odeint (G, x_init, t_vec) .transpose ()

c_path = 1 - s_path - e_path # cumulative cases
return i_path, c_path

1.4 Experiments

Let’s run some experiments using this code.

The time period we investigate will be 550 days, or around 18 months:

t_length = 550
grid_size = 1000
t_vec = np.linspace (0, t_length, grid_size)

1.4.1 Experiment 1: Constant RO Case

Let’s start with the case where RO is constant.

We calculate the time path of infected people under different assumptions for RO:
RO_vals = np.linspace(l.6, 3.0, 6)

labels = [f'SRO = {r:.2f}$' for r in RO_vals]

i_paths, c_paths = [], []

for r in RO_vals:
i_path, c_path = solve_path(r, t_vec)
i_paths.append (i_path)
c_paths.append (c_path)

Here’s some code to plot the time paths.
def plot_paths (paths, labels, times=t_vec):
fig, ax = plt.subplots /()

for path, label in zip(paths, labels):

(continued from previous page)

(continues on next page)

10 Chapter 1.

Modeling COVID 19

Intermediate Quantitative Economics with Python

(continued from previous page)

ax.plot (times, path, label=label)
ax.legend(loc="upper left')
plt.show ()

Let’s plot current cases as a fraction of the population.

plot_paths (i_paths, labels)

—— RO=1.60
—— RO=1.88
0.20{ —— RO=2.16
—— R0=2.44
— RO=2.72
—— RO =3.00
0.15 -
0.10 -
0.05
0.00
T T T T T T
0 100 200 300 400 500

As expected, lower effective transmission rates defer the peak of infections.
They also lead to a lower peak in current cases.

Here are cumulative cases, as a fraction of population:

plot_paths (c_paths, labels)

1.4. Experiments 11

Intermediate Quantitative Economics with Python

—— RO =1.60
—— R0O=1.88
0.8 — R0=2.16
—— R0O=2.44
—— R0O=2.72
—— RO =3.00
0.6 -
0.4 -
0.2 -
0.0 -
T T T T T T
0 100 200 300 400 500

1.4.2 Experiment 2: Changing Mitigation

Let’s look at a scenario where mitigation (e.g., social distancing) is successively imposed.

Here’s a specification for RO as a function of time.

def RO_mitigating(t, r0=3, n=1, r_bar=1.6):
RO = r0 * exp(—-n * t) + (1 — exp(—n * t)) * r_bar
return RO
The idea is that RO starts off at 3 and falls to 1.6.
This is due to progressive adoption of stricter mitigation measures.
The parameter n controls the rate, or the speed at which restrictions are imposed.

‘We consider several different rates:

n_vals = 1/5, 1/10, 1/20, 1/50, 1/100
labels = [fr'$\eta = {n:.2f}$' for n in n_vals]

This is what the time path of RO looks like at these alternative rates:
fig, ax = plt.subplots()

for n, label in zip(n_vals, labels):
ax.plot (t_vec, RO_mitigating(t_vec, n=n), label=label)

ax.legend()
plt.show ()

12 Chapter 1.

Modeling COVID 19

Intermediate Quantitative Economics with Python

3.0

2.8 7

2.6

2.4 1

2.2 7

2.0 1

1.8

1.6

T T T T T
0 100 200 300 400 500

Let’s calculate the time path of infected people:
i_paths, c_paths = [], []
for n in n_vals:
RO = lambda t: RO_mitigating(t, n=n)
i_path, c_path = solve_path (RO, t_vec)

i_paths.append (i_path)
c_paths.append (c_path)

These are current cases under the different scenarios:

plot_paths (i_paths, labels)

1.4. Experiments 13

Intermediate Quantitative Economics with Python

0.07 4 — n=0.20
— n=20.10
0.06 1 — n=0.05
— n=20.02
0.054 — n=0.01
0.04 ~
0.03 ~
0.02 ~
0.01 ~
0.00 ~
T T T T T T
)] 100 200 300 400 300
Here are cumulative cases, as a fraction of population:
plot_paths (c_paths, labels)
— n=0.20
0.6 9 — n=0.10
— n=20.05
054 — n=0.02
— n=20.01
0.4 1
0.3 1
0.2 1
0.1
0.0 1
T T T T T T
)] 100 200 300 400 300

14

Chapter 1. Modeling COVID 19

Intermediate Quantitative Economics with Python

1.5 Ending Lockdown

The following replicates additional results by Andrew Atkeson on the timing of lifting lockdown.
Consider these two mitigation scenarios:

1. R, = 0.5 for 30 days and then R, = 2 for the remaining 17 months. This corresponds to lifting lockdown in 30
days.

2. R, = 0.5 for 120 days and then R, = 2 for the remaining 14 months. This corresponds to lifting lockdown in 4
months.

The parameters considered here start the model with 25,000 active infections and 75,000 agents already exposed to the
virus and thus soon to be contagious.

nitial conditions

= 25_000 / pop_size
75_000 / pop_size
=1 -1_0 - e_0

= s_0, e 0, i_0

1
i_0
e 0
s_0
x_0

Let’s calculate the paths:

RO_paths = (lambda t: 0.5 if t < 30 else 2,
lambda t: 0.5 if t < 120 else 2)

labels = [f'scenario {i}' for i in (1, 2)]
i_paths, c_paths = [], []
for RO in RO_paths:
i_path, c_path = solve_path (R0, t_vec, x_init=x_0)

i_paths.append (i_path)
c_paths.append(c_path)

Here is the number of active infections:

plot_paths (i_paths, labels)

1.5. Ending Lockdown 15

https://drive.google.com/file/d/1uS7n-7zq5gfSgrL3S0HByExmpq4Bn3oh/view

Intermediate Quantitative Economics with Python

0.12

—— scenario 1
scenario 2

0.10

0.08 -

0.06

0.04 1

0.02

0.00 -

T T T
)] 100 200 300
What kind of mortality can we expect under these scenarios?

Suppose that 1% of cases result in death

v =0.01

This is the cumulative number of deaths:

paths = [path * v * pop_size for path in c_paths]
plot_paths (paths, labels)

T
400

T
500

16

Chapter 1. Modeling COVID 19

Intermediate Quantitative Economics with Python

le6
—— scenario 1

2.5 7 scenario 2
2.0 1
1.5
1.0 -
0.5 1
0.0

T T T T T T

0 100 200 300 400 500

This is the daily death rate:

paths =

[path * v * v * pop_size for path in i_paths]

plot_paths (paths, labels)

1.5. Ending Lockdown

17

Intermediate Quantitative Economics with Python

20000 +

15000 ~

10000 ~

5000 ~

—— scenario 1
scenario 2

T
0 100

T
200

T
300

T T
400 500

Pushing the peak of curve further into the future may reduce cumulative deaths if a vaccine is found.

18

Chapter 1. Modeling COVID 19

CHAPTER
TWO

LINEAR ALGEBRA

Contents

o Linear Algebra
— Overview
— Vectors

Matrices

Solving Systems of Equations

Eigenvalues and Eigenvectors

Further Topics

Exercises

2.1 Overview

Linear algebra is one of the most useful branches of applied mathematics for economists to invest in.

For example, many applied problems in economics and finance require the solution of a linear system of equations, such
as

Yy = axy + by
Yo = €T + dzo
or, more generally,
Y1 = 01171 + Q19T + 0+ ATy
: 2.1
Yn = Qp1Tq + Qpoy + o+ Qg
The objective here is to solve for the “unknowns” x1, ..., x, given aq, ..., G, and yq, ..., Y,,.
When considering such problems, it is essential that we first consider at least some of the following questions
» Does a solution actually exist?
« Are there in fact many solutions, and if so how should we interpret them?

« If no solution exists, is there a best “approximate” solution?

19

Intermediate Quantitative Economics with Python

« If a solution exists, how should we compute it?
These are the kinds of topics addressed by linear algebra.
In this lecture we will cover the basics of linear and matrix algebra, treating both theory and computation.
We admit some overlap with this lecture, where operations on NumPy arrays were first explained.

Note that this lecture is more theoretical than most, and contains background material that will be used in applications as
we go along.

Let’s start with some imports:

import matplotlib.pyplot as plt

import numpy as np

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

from scipy.linalg import inv, solve, det, eig

2.2 Vectors

A vector of length n is just a sequence (or array, or tuple) of n numbers, which we write as * = (x4, ...,,,) or
T =[xy, .., 2,

We will write these sequences either horizontally or vertically as we please.

(Later, when we wish to perform certain matrix operations, it will become necessary to distinguish between the two)
The set of all n-vectors is denoted by R™.

For example, R? is the plane, and a vector in R? is just a point in the plane.

Traditionally, vectors are represented visually as arrows from the origin to the point.

The following figure represents three vectors in this manner

fig, ax = plt.subplots(figsize=(10, 8))

Set the axes through the origin

for spine in ['left', 'bottom']:
ax.spines|[spine] .set_position('zero')

for spine in ['right', 'top'l]:
ax.spines[spine].set_color('none')

ax.set (xlim=(-5, 5), ylim=(-5, 5))

ax.grid()
vecs = ((2, 4), (=3, 3), (-4, -3.5))
for v in vecs:
ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict (facecolor="'blue',
shrink=0,
alpha=0.7,
width=0.5))
ax.text (1.1 * v[0], 1.1 * v[1], str(v))
plt.show ()

20 Chapter 2. Linear Algebra

https://python-programming.quantecon.org/numpy.html

Intermediate Quantitative Economics with Python

(2, 4)

(-3,3)

(-4, -3.5)

2.2.1 Vector Operations

The two most common operators for vectors are addition and scalar multiplication, which we now describe.

As a matter of definition, when we add two vectors, we add them element-by-element

Ty (7 Ty + Yy
S 11 B g E R

Scalar multiplication is an operation that takes a number y and a vector = and produces

Y1
N = ’)’?32
VT

Scalar multiplication is illustrated in the next figure

fig, ax = plt.subplots(figsize=(10, 8))
Set the axes through the origin
for spine in ['left', 'bottom']:
(continues on next page)

2.2. Vectors 21

Intermediate Quantitative Economics with Python

(continued from previous page)

ax.spines[spine] .set_position('zero')
for spine in ['right', 'top']:
ax.spines[spine].set_color('none')

ax.set (xlim=(-5, 5), ylim=(-5, 5))

x = (2, 2)
ax.annotate ('', xy=x, xytext=(0, 0),
arrowprops=dict (facecolor="blue',
shrink=0,
alpha=1,
width=0.5))
ax.text (x[0] + 0.4, x[1] - 0.2, 'x', fontsize='16")
scalars = (-2, 2)
X = np.array (x)

for s in scalars:

v = s * x
ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict (facecolor="'red',
shrink=0,
alpha=0.5,
width=0.5))
ax.text(v[0] + 0.4, v[1] - 0.2, f£'S$S{s} x$', fontsize='1l6")
plt.show ()

22 Chapter 2. Linear Algebra

Intermediate Quantitative Economics with Python

In Python, a vector can be represented as a list or tuple, suchas x = (2, 4, 6),butis more commonly represented
as a NumPy array.

One advantage of NumPy arrays is that scalar multiplication and addition have very natural syntax

X = np.ones(3) # Vector of three ones
y = np.array((2, 4, 6)) # Converts tuple (2, 4, 6) into array
X +t vy

2.2. Vectors 23

https://python-programming.quantecon.org/numpy.html#numpy-arrays

Intermediate Quantitative Economics with Python

2.2.2 Inner Product and Norm

The inner product of vectors x,y € R” is defined as

n
Ty = Z L3Y;
i=1

Two vectors are called orthogonal if their inner product is zero.

The norm of a vector z represents its “length” (i.e., its distance from the zero vector) and is defined as

1/2
n
ol =V = (3o
i=1

The expression ||z — y|| is thought of as the distance between x and y.

Continuing on from the previous example, the inner product and norm can be computed as follows

np.sum(x * vy) # Inner product of x and y, method 1
np.float64(12.0)
x @y # Inner product of x and y, method 2 (preferred)

np.float64(12.0)

The @ operator is preferred because it uses optimized BLAS libraries that implement fused multiply-add operations,
providing better performance and numerical accuracy compared to the separate multiply and sum operations.

np.sqgrt (np.sum(x**2)) # Norm of x, take one
np.float64(1.7320508075688772)

np.sqgrt (x @ x) # Norm of x, take two (preferred)
np.float64(1.7320508075688772)

np.linalg.norm(x) # Norm of x, take three

np.float64(1.7320508075688772)

2.2.3 Span

Given a set of vectors A := {ay, ..., a;} in R™, it's natural to think about the new vectors we can create by performing

linear operations.
New vectors created in this manner are called linear combinations of A.

In particular, y € R™ is a linear combination of A := {a4, ..., a;} if
y = Braq + -+ + Bray, for some scalars 5y, ..., 5,

In this context, the values 3, ..., 5, are called the coefficients of the linear combination.

24 Chapter 2.

Linear Algebra

Intermediate Quantitative Economics with Python

The set of linear combinations of A is called the span of A.

The next figure shows the span of A = {a;, a5} in R3.

The span is a two-dimensional plane passing through these two points and the origin.

ax = plt.figure(figsize=(10,
Xx_min, x_max = -5, 5

y_min, y_max = -5, 5

a, B =0.2, 0.1

ax.set (xlim=(x_min,
xticks=(0,),

x_max), ylim=(x_min,
yticks=(0,), zticks=(0,

X_max) ,

8)) .add_subplot (projection="3d")

zlim=(x_min, x_max),

))

gs = 3

z = np.linspace(x_min, x_max, gs)

X = np.zeros (gs)

y = np.zeros (gs)

ax.plot(x, vy, z, 'k=', lw=2, alpha=0.5)
ax.plot(z, %, y, 'k=-', 1lw=2, alpha=0.5)
ax.plot(y, z, x, 'k=', 1lw=2, alpha=0.5)

Fixed linear function, to generate a plane

def f(x, y):
return a * x + B * y

Vector locations, by coordinate

x_coords = np.array ((3, 3))
y_coords = np.array((4, —-4))
z = f(x_coords, y_coords)

for i in (0, 1):

ax.text (x_coords[i], y_coords[i], z[i],

Lines to vectors

for i in (0, 1):
x = (0, x_coords[i])
y = (0, y_coords([i])
z = (0, f(x_coords[i], y_coords[i]))
ax.plot(x, y, z, 'b-', lw=1.5, alpha=0.
Draw the plane
grid_size = 20
xr2 = np.linspace (x_min, x_max, grid_size)
yr2 = np.linspace(y_min, y_max, grid_size)
X2, y2 = np.meshgrid(xr2, yr2)
z2 = £(x2, y2)
ax.plot_surface(x2, y2, z2, rstride=1,

linewidth=0,
plt.show ()

cstride=1,
antialiased=True,

f'Sa_{i+1}$', fontsize=14)

6)

cmap=cm. jet,
alpha=0.2)

2.2. Vectors

25

Intermediate Quantitative Economics with Python

Examples

If A contains only one vector a; € R2, then its span is just the scalar multiples of a,, which is the unique line passing

through both a, and the origin.

If A= {e;,e,,e3} consists of the canonical basis vectors of R, that is

ol o

then the span of A is all of R3, because, for any z = (x,, x4, z3) € R, we can write
T = Xi€] + Toey + X365

Now consider A, = {e;, eq,e1 + €5}

26

Chapter 2. Linear Algebra

Intermediate Quantitative Economics with Python

If y = (Y4, Ys, ys) is any linear combination of these vectors, then y; = 0 (check it).

Hence A, fails to span all of R3.

2.2.4 Linear Independence
As we'll see, it’s often desirable to find families of vectors with relatively large span, so that many vectors can be described
by linear operators on a few vectors.
The condition we need for a set of vectors to have a large span is what’s called linear independence.
In particular, a collection of vectors A := {ay, ..., a;} in R™ is said to be
« linearly dependent if some strict subset of A has the same span as A.
« linearly independent if it is not linearly dependent.

Put differently, a set of vectors is linearly independent if no vector is redundant to the span and linearly dependent
otherwise.

To illustrate the idea, recall the figure that showed the span of vectors {a, a5} in R as a plane through the origin.
If we take a third vector a5 and form the set {a;, a,, a3}, this set will be

« linearly dependent if a4 lies in the plane

« linearly independent otherwise

As another illustration of the concept, since R™ can be spanned by n vectors (see the discussion of canonical basis vectors
above), any collection of m > n vectors in R” must be linearly dependent.

The following statements are equivalent to linear independence of A := {aq,...,a;,} C R"
1. No vector in A can be formed as a linear combination of the other elements.
2. If Byaq + - Bay, = 0 for scalars B4, ..., By, then 5, = - = 3, = 0.

(The zero in the first expression is the origin of R™)

2.2.5 Unique Representations

Another nice thing about sets of linearly independent vectors is that each element in the span has a unique representation
as a linear combination of these vectors.

In other words, if A := {ay,...,a,} C R™ is linearly independent and
y = Pray + - Bray,

then no other coefficient sequence v, ... , y;, will produce the same vector y.

Indeed, if we also have y = v,a; + - y,a;, then

(By —71)ay + -+ (B —y)ap =0

Linear independence now implies ~; = (3, for all .

2.2. Vectors 27

Intermediate Quantitative Economics with Python

2.3 Matrices

Matrices are a neat way of organizing data for use in linear operations.

An n X k matrix is a rectangular array A of numbers with n rows and &k columns:

ap; Qg a1k
A= |G21 @22 Aok
Apy Qpoy o Qg

Often, the numbers in the matrix represent coefficients in a system of linear equations, as discussed at the start of this
lecture.

For obvious reasons, the matrix A is also called a vector if eithern = 1 or k = 1.

In the former case, A is called a row vector, while in the latter it is called a column vector.

If n = k, then A is called square.

The matrix formed by replacing a;; by a,; for every i and j is called the transpose of A and denoted Alor AT,
If A= A’, then A is called symmetric.

For a square matrix A, the i elements of the form a,, for i = 1, ..., n are called the principal diagonal.

A is called diagonal if the only nonzero entries are on the principal diagonal.

If, in addition to being diagonal, each element along the principal diagonal is equal to 1, then A is called the identity
matrix and denoted by 1.

2.3.1 Matrix Operations

Just as was the case for vectors, a number of algebraic operations are defined for matrices.

Scalar multiplication and addition are immediate generalizations of the vector case:

aip o Qg Y@y ot YAy
YA=~] : : : = : : :
Ap1 o Ay V@py o YA

Gyp A biy o by ay +01; o ay by
S R) O D T : : :
An1 0 Qpg bnl bnk Gy + bnl Qg+ bnk

In the latter case, the matrices must have the same shape in order for the definition to make sense.

and

A+B=

We also have a convention for multiplying two matrices.

The rule for matrix multiplication generalizes the idea of inner products discussed above and is designed to make multi-
plication play well with basic linear operations.

If A and B are two matrices, then their product AB is formed by taking as its 7, j-th element the inner product of the
i-th row of A and the j-th column of B.

There are many tutorials to help you visualize this operation, such as this one, or the discussion on the Wikipedia page.
If Aisn x kand B is j x m, then to multiply A and B we require £ = j, and the resulting matrix AB is n X m.

As perhaps the most important special case, consider multiplying n x & matrix A and k£ x 1 column vector x.

28 Chapter 2. Linear Algebra

https://www.mathsisfun.com/algebra/matrix-multiplying.html
https://en.wikipedia.org/wiki/Matrix_multiplication

Intermediate Quantitative Economics with Python

According to the preceding rule, this gives us an n x 1 column vector
ayy v Ay | [T a1y + o+

Azx = : : : = : 2.2)
nl 7 Qg T (p Ty + o0+ ATy

© Note

AB and BA are not generally the same thing.

Another important special case is the identity matrix.
You should check that if A isn x k and I is the k x k identity matrix, then Al = A.

If [is the n X n identity matrix, then /A = A.

2.3.2 Matrices in NumPy

NumPy arrays are also used as matrices, and have fast, efficient functions and methods for all the standard matrix oper-
ations'.

You can create them manually from tuples of tuples (or lists of lists) as follows

A = ((1, 2),
(3, 4))

type (A)

tuple
A = np.array (A)
type (A)

numpy .ndarray
A.shape

(2, 2)

The shape attribute is a tuple giving the number of rows and columns — see here for more discussion.
To get the transpose of A, use A.transpose () or, more simply, A. T.
There are many convenient functions for creating common matrices (matrices of zeros, ones, etc.) — see here.

Since operations are performed elementwise by default, scalar multiplication and addition have very natural syntax

A = np.identity(3)
B np.ones ((3, 3))
2 * A

! Although there is a specialized matrix data type defined in NumPy, it's more standard to work with ordinary NumPy arrays. See this discussion.

2.3. Matrices 29

https://python-programming.quantecon.org/numpy.html#shape-and-dimension
https://python-programming.quantecon.org/numpy.html#creating-arrays
https://python-programming.quantecon.org/numpy.html#matrix-multiplication

Intermediate Quantitative Economics with Python

array([[2., 0., 0.1,

array ([[2., 1., 1.1,
[lop Bop dLolly
(1., 1., 2.11)
To multiply matrices we use the @ symbol.

In particular, A @ B is matrix multiplication, whereas A * B is element-by-element multiplication.

See here for more discussion.

2.3.3 Matrices as Maps

Each n x k matrix A can be identified with a function f(z) = Az that maps = € R¥ into y = Az € R™.
These kinds of functions have a special property: they are linear.

A function f: R* — R is called linear if, for all z, y € R¥ and all scalars «, /3, we have

flax + By) = af(x) + Bf(y)

You can check that this holds for the function f(x) = Az + b when b is the zero vector and fails when b is nonzero.

In fact, it’s known that f is linear if and only if there exists a matrix A such that f(x) = Ax for all x.

2.4 Solving Systems of Equations

Recall again the system of equations (2.1).

If we compare (2.1) and (2.2), we see that (2.1) can now be written more conveniently as
y= Az 2.3)

The problem we face is to determine a vector z € R¥ that solves (2.3), taking y and A as given.
This is a special case of a more general problem: Find an x such that y = f(x).

Given an arbitrary function f and a y, is there always an « such that y = f(z)?

If so, is it always unique?

The answer to both these questions is negative, as the next figure shows

def f(x):
return 0.6 * np.cos(4 * x) + 1.4

xmin, xmax = -1, 1
x = np.linspace (xmin, xmax, 160)
y = £(x)

va, yb = np.min(y), np.max(y)
(continues on next page)

30 Chapter 2. Linear Algebra

https://python-programming.quantecon.org/numpy.html#matrix-multiplication
https://en.wikipedia.org/wiki/Linear_map#Matrices

Intermediate Quantitative Economics with Python

(continued from previous page)

fig, axes = plt.subplots(2, 1, figsize=(10, 10))

for ax in axes:
Set the axes through the origin
for spine in ['left', 'bottom']:
ax.spines[spine] .set_position('zero")
for spine in ['right', 'top']:
ax.spines[spine] .set_color('none')

ax.set (ylim=(-0.6, 3.2), xlim=(xmin, xmax),
yticks=(), xticks=())

ax.plot(x, vy, 'k-', lw=2, label='SfS")

ax.fill_between (x, ya, yb, facecolor='blue', alpha=0.05)
ax.vlines ([0], ya, yb, 1lw=3, color='blue', label='range of f')
ax.text (0.04, -0.3, '0', fontsize=16)

ax = axes|[0]

ax.legend(loc="upper right', frameon=False)

ybar = 1.5

ax.plot(x, x * 0 + ybar, 'k——-', alpha=0.5)

ax.text (0.05, 0.8 * ybar, 'Sy$', fontsize=16)

for i, z in enumerate((-0.35, 0.35)):
ax.vlines(z, 0, f(z), linestyle='--', alpha=0.5)
ax.text(z, -0.2, f'Sx _{i}$', fontsize=16)

ax = axes|[1]

ybar = 2.6

ax.plot(x, x * 0 + ybar, 'k——-', alpha=0.5)
(0

ax.text (0.04, 0.91 * ybar, 'Sy$', fontsize=16)

plt.show ()

2.4. Solving Systems of Equations 31

Intermediate Quantitative Economics with Python

—_—

= range of f

X0 0 X1

In the first plot, there are multiple solutions, as the function is not one-to-one, while in the second there are no solutions,
since y lies outside the range of f.

Can we impose conditions on A in (2.3) that rule out these problems?

In this context, the most important thing to recognize about the expression Az is that it corresponds to a linear combination
of the columns of A.

In particular, if aq, ..., a;, are the columns of A, then
Az = zqaq + -+ 104

Hence the range of f(x) = Ax is exactly the span of the columns of A.
We want the range to be large so that it contains arbitrary y.
As you might recall, the condition that we want for the span to be large is linear independence.

A happy fact is that linear independence of the columns of A also gives us uniqueness.

32 Chapter 2. Linear Algebra

Intermediate Quantitative Economics with Python

Indeed, it follows from our earlier discussion thatif {a,, ..., a; } are linearly independentand y = Az = xya;+ 42 a4,
then no z # x satisfies y = Az.

2.4.1 The Square Matrix Case

Let’s discuss some more details, starting with the case where A is n X n.
This is the familiar case where the number of unknowns equals the number of equations.
For arbitrary y € R"™, we hope to find a unique = € R™ such that y = Az.

In view of the observations immediately above, if the columns of A are linearly independent, then their span, and hence
the range of f(z) = A, is all of R™.

Hence there always exists an z such that y = Az.
Moreover, the solution is unique.
In particular, the following are equivalent
1. The columns of A are linearly independent.
2. For any y € R™, the equation y = Ax has a unique solution.

The property of having linearly independent columns is sometimes expressed as having full column rank.

Inverse Matrices

Can we give some sort of expression for the solution?
If y and A are scalar with A # 0, then the solution is x = A~ 1y.
A similar expression is available in the matrix case.

In particular, if square matrix A has full column rank, then it possesses a multiplicative inverse matrix A~!, with the
property that AA™t = A71A = 1.

As a consequence, if we pre-multiply both sides of y = Az by A~!, we get x = A~ y.

This is the solution that we’re looking for.

Determinants

Another quick comment about square matrices is that to every such matrix we assign a unique number called the deter-
minant of the matrix — you can find the expression for it here.

If the determinant of A is not zero, then we say that A is nonsingular.

Perhaps the most important fact about determinants is that A is nonsingular if and only if A is of full column rank.

This gives us a useful one-number summary of whether or not a square matrix can be inverted.

2.4. Solving Systems of Equations 33

https://en.wikipedia.org/wiki/Determinant

Intermediate Quantitative Economics with Python

2.4.2 More Rows than Columns

This is the n x k case with n > k.

This case is very important in many settings, not least in the setting of linear regression (where n is the number of
observations, and & is the number of explanatory variables).

Given arbitrary y € R™, we seek an = € R” such that y = Ax.
In this setting, the existence of a solution is highly unlikely.

Without much loss of generality, let’s go over the intuition focusing on the case where the columns of A are linearly
independent.

It follows that the span of the columns of A is a k-dimensional subspace of R™.

This span is very “unlikely” to contain arbitrary y € R™.

To see why, recall the figure above, where k = 2 and n = 3.

Imagine an arbitrarily chosen i € R?, located somewhere in that three-dimensional space.

What's the likelihood that y lies in the span of {a;, a5} (i.e., the two dimensional plane through these points)?
In a sense, it must be very small, since this plane has zero “thickness”.

As aresult, in the n > k case we usually give up on existence.

However, we can still seek the best approximation, for example, an 2 that makes the distance |y — Az| as small as
possible.

To solve this problem, one can use either calculus or the theory of orthogonal projections.

The solution is known to be & = (A’ A)~! A’y — see for example chapter 3 of these notes.

2.4.3 More Columns than Rows

This is the n X k case with n < k, so there are fewer equations than unknowns.

In this case there are either no solutions or infinitely many — in other words, uniqueness never holds.
For example, consider the case where kK = 3 and n = 2.

Thus, the columns of A consists of 3 vectors in R2.

This set can never be linearly independent, since it is possible to find two vectors that span R?.

(For example, use the canonical basis vectors)

It follows that one column is a linear combination of the other two.

For example, let’s say that a; = aa, + Bas.

Then if y = Az = x,a; + x4a5 + T5a4, We can also write
y = zy(aay + Bag) + 250y + w303 = (2100 + 3)ay + (2,8 + x3)ay

In other words, uniqueness fails.

34 Chapter 2. Linear Algebra

https://python.quantecon.org/_static/lecture_specific/linear_algebra/course_notes.pdf

Intermediate Quantitative Economics with Python

2.4.4 Linear Equations with SciPy

Here’s an illustration of how to solve linear equations with SciPy’s 1 inalg submodule.

All of these routines are Python front ends to time-tested and highly optimized FORTRAN code

A= ((1, 2), (3, 4))

A = np.array (A)

y = np.ones((2, 1)) # Column vector

det (A) # Check that A is nonsingular, and hence invertible

np.float64 (-2.0)

A_inv = inv (A) # Compute the inverse
A _inv

array([[-2. , 1.1,
[1.5, =-0.511)

x = A_inv @ y # Solution
A @ x # Should equal y

array ([[1.],
[1.11)

solve (A, y) # Produces the same solution

array ([[-1.],
[1.1D)
Observe how we can solve for x = A’ly by either via inv (A) @ y,orusing solve (A, y).

The latter method uses a different algorithm (LU decomposition) that is numerically more stable, and hence should almost
always be preferred.

To obtain the least-squares solution = (A’A) "t A’y, use scipy.linalg.lstsq (A, vy).

2.5 Eigenvalues and Eigenvectors

Let A be an n X n square matrix.

If A is scalar and v is a non-zero vector in R™ such that
Av=)\v

then we say that X is an eigenvalue of A, and v is an eigenvector.
Thus, an eigenvector of A is a vector such that when the map f(x) = Ax is applied, v is merely scaled.
The next figure shows two eigenvectors (blue arrows) and their images under A (red arrows).

As expected, the image Av of each v is just a scaled version of the original

2.5. Eigenvalues and Eigenvectors 35

Intermediate Quantitative Economics with Python

A= ((L, 2),

(2, 1))
A = np.array (A)
evals, evecs = eig(A)
evecs = evecs[:, 0], evecs[:, 1]

fig, ax = plt.subplots(figsize=(10,

Set the axes through the origin
for spine in ['left', 'bottom']:

ax.spines[spine] .set_position('zero')

for spine in ['right', 'top'l]:

8))

ax.spines[spine].set_color ('none')

ax.grid(alpha=0.4)

xmin, xmax = -3, 3
ymin, ymax = -3, 3

ax.set (xlim=(xmin, xmax), ylim=(ymin,

Plot each eigenvector
for v in evecs:

ax.annotate('', xy=v, xytext=(0,
arrowprops=dict (facecolor="'blue',

shrink=0,
alpha=0.6,
width=0.5))

Plot the image of each eigenvector

for v in evecs:
v = A @v

ax.annotate('', xy=v, xytext=(0,
arrowprops=dict (facecolor="'red',

shrink=0,
alpha=0.6,
width=0.5))

Plot the lines they run through
x = np.linspace (xmin, xmax, 3)
for v in evecs:

a=v[1l] / v[0]

ax.plot(x, a * x, 'b-', 1lw=0.4)

plt.show ()

0),

0),

ymax))

36

Chapter 2. Linear Algebra

Intermediate Quantitative Economics with Python

o 37 P 4l
. -
R -
S e
- (//’
. 2
-,
.
-,
o
-,
. 14
.
T T T {E; T T 1
-3 —2 -1 - 1 2 3
L
-
-~ .
- .
-1 4 -
~ 1
.,
- S
.
P .
- .,
/
—2 4 "
,’/) -
/’ ™
- .
o ~
-
_3 p

The eigenvalue equation is equivalent to (A — AI)v = 0, and this has a nonzero solution v only when the columns of
A — M are linearly dependent.

This in turn is equivalent to stating that the determinant is zero.
Hence to find all eigenvalues, we can look for A such that the determinant of A — AT is zero.
This problem can be expressed as one of solving for the roots of a polynomial in A of degree n.
This in turn implies the existence of n solutions in the complex plane, although some might be repeated.
Some nice facts about the eigenvalues of a square matrix A are as follows
1. The determinant of A equals the product of the eigenvalues.
2. The trace of A (the sum of the elements on the principal diagonal) equals the sum of the eigenvalues.
3. If A is symmetric, then all of its eigenvalues are real.
4. If Ais invertible and \,, ..., \,, are its eigenvalues, then the eigenvalues of A~!are 1/, ..., 1/\,,.
A corollary of the first statement is that a matrix is invertible if and only if all its eigenvalues are nonzero.

Using SciPy, we can solve for the eigenvalues and eigenvectors of a matrix as follows

A= ((L, 2),
(z, 1))

(continues on next page)

2.5. Eigenvalues and Eigenvectors 37

Intermediate Quantitative Economics with Python

(continued from previous page)
A = np.array (A)
evals, evecs = eig(A)
evals

array ([3.+0.3, -1.+0.31)
evecs

array([[0.70710678, -0.70710678],
[0.70710678, 0.7071067811)

Note that the columns of evecs are the eigenvectors.

Since any scalar multiple of an eigenvector is an eigenvector with the same eigenvalue (check it), the eig routine normalizes
the length of each eigenvector to one.

2.5.1 Generalized Eigenvalues

It is sometimes useful to consider the generalized eigenvalue problem, which, for given matrices A and B, seeks gen-
eralized eigenvalues A and eigenvectors v such that

Av = A\Bv

This can be solved in SciPy via scipy.linalg.eig (A, B).

Of course, if B is square and invertible, then we can treat the generalized eigenvalue problem as an ordinary eigenvalue
problem B! Av = Av, but this is not always the case.

2.6 Further Topics

We round out our discussion by briefly mentioning several other important topics.

2.6.1 Series Expansions

Recall the usual summation formula for a geometric progression, which states that if |a| < 1, then ZZ’;O ab* = (1—a)™t.

A generalization of this idea exists in the matrix setting.

Matrix Norms

Let A be a square matrix, and let

[All == max [|Az]
Jz|=1

The norms on the right-hand side are ordinary vector norms, while the norm on the left-hand side is a matrix norm —
in this case, the so-called spectral norm.

For example, for a square matrix .S, the condition |S| < 1 means that S is contractive, in the sense that it pulls all
vectors towards the origin’.

2 Suppose that | S| < 1. Take any nonzero vector x, and let r := |z|. We have |Sz| = r||S(z/r)| < |S| < r = ||z||. Hence every point is
pulled towards the origin.

38 Chapter 2. Linear Algebra

Intermediate Quantitative Economics with Python

Neumann’s Theorem

Let A be a square matrix and let AF := AA*1 with A! := A,
In other words, A* is the k-th power of A.

Neumann’s theorem states the following: If | A¥| < 1 for some k € N, then I — A is invertible, and

(I—A)t=> Ak (2.4)
k=0

Spectral Radius

A result known as Gelfand’s formula tells us that, for any square matrix A,
p(A) = lim [A¥|V/E
k—o0

Here p(A) is the spectral radius, defined as max; |\;|, where {\; }, is the set of eigenvalues of A.

As a consequence of Gelfand’s formula, if all eigenvalues are strictly less than one in modulus, there exists a k with
1A% < 1.

In which case (2.4) is valid.

2.6.2 Positive Definite Matrices

Let A be a symmetric n X n matrix.
We say that A is

1. positive definite if 2’ Az > 0 for every z € R™ \ {0}

2. positive semi-definite or nonnegative definite if 2’ Az > 0 for every x € R™
Analogous definitions exist for negative definite and negative semi-definite matrices.

It is notable that if A is positive definite, then all of its eigenvalues are strictly positive, and hence A is invertible (with
positive definite inverse).

2.6.3 Differentiating Linear and Quadratic Forms

The following formulas are useful in many economic contexts. Let
e z,x and a all be n x 1 vectors
e Abeann x n matrix
e Bbe an m x n matrix and y be an m x 1 vector

Then

2. 2z — A
3. 9AT — (A+ A')x

/
4, 2Bz _ B,

2.6. Further Topics 39

Intermediate Quantitative Economics with Python

9y'Bz __ ’
5. S5 =yz

Exercise 2.7.1 below asks you to apply these formulas.

2.6.4 Further Reading

The documentation of the scipy.linalg submodule can be found here.

Chapters 2 and 3 of the Econometric Theory contains a discussion of linear algebra along the same lines as above, with
solved exercises.

If you don’t mind a slightly abstract approach, a nice intermediate-level text on linear algebra is [Jinich, 1994].

2.7 Exercises

40 Chapter 2. Linear Algebra

https://docs.scipy.org/doc/scipy/reference/linalg.html
https://johnstachurski.net/emet.html

Intermediate Quantitative Economics with Python

©® Exercise 2.7.1

Let x be a given n x 1 vector and consider the problem
v(z) = max {—y' Py — v Qu}
subject to the linear constraint
y= Az + Bu

Here

e Pisann x n matrix and @) is an m X m matrix

e Aisann X n matrix and B is an n X m matrix

« both P and @) are symmetric and positive semidefinite
(What must the dimensions of y and u be to make this a well-posed problem?)
One way to solve the problem is to form the Lagrangian

L =—y' Py—uQu+ N [Az + Bu — y|

where) is an n x 1 vector of Lagrange multipliers.

Try applying the formulas given above for differentiating quadratic and linear forms to obtain the first-order conditions
for maximizing £ with respect to y, v and minimizing it with respect to \.

Show that these conditions imply that
1. A= —-2Py.
2. The optimizing choice of u satisfies u = —(Q + B’PB)~ !B’ P Ax.
3. The function v satisfies v(z) = —z’ Pz where P = A’PA — A’ PB(Q + B'PB)"'B'PA.

As we will see, in economic contexts Lagrange multipliers often are shadow prices.

©® Note

If we don’t care about the Lagrange multipliers, we can substitute the constraint into the objective function, and
then just maximize —(Ax + Bu)' P(Az + Bu) — u’Qu with respect to u. You can verify that this leads to the
same maximizer.

© Solution

We have an optimization problem:
v(x) = max{—y' Py — v’ Qu}
Y, u
S.t.
y = Az + Bu

with primitives
o P be a symmetric and positive semidefinite n. x n matrix

¢ () be a symmetric and positive semidefinite 7 X m matrix

2.7. Exercises a1

Intermediate Quantitative Economics with Python

e Aann x n matrix
e Bann X m matrix

The associated Lagrangian is:
L=—y'Py—uQu-+ XN[Axz + Bu —y]

Step 1.
Differentiating Lagrangian equation w.r.t y and setting its derivative equal to zero yields

oL

= (P+P)ly—A=-2Py—\=0
3y (P+ Py y :

since P is symmetric.

Accordingly, the first-order condition for maximizing L w.r.t. y implies

A=—2Py
Step 2.
Differentiating Lagrangian equation w.r.t. u and setting its derivative equal to zero yields
8L / / /
5 =—(Q+Q))u—B'X=—-2Qu+BX=0
U

Substituting A = —2 Py gives
Qu+ B'Py=0
Substituting the linear constraint y = Ax + Bu into above equation gives
Qu+ B'P(Az + Bu) =0

(Q+ B'’PB)u+ B'PAx =0
which is the first-order condition for maximizing L w.r.t. u.
Thus, the optimal choice of u must satisfy

u=—(Q+ B'PB)"'B'PAz,
which follows from the definition of the first-order conditions for Lagrangian equation.

Step 3.

Rewriting our problem by substituting the constraint into the objective function, we get
v(z) = max{—(Az + Bu)' P(Az 4+ Bu) — v Qu}
Since we know the optimal choice of u satisfies u = —(Q + B’ PB) !B’ P Az, then
v(z) = —(Ax + Bu)'P(Az + Bu) —v'Qu with w=—(Q + B'PB)"'B'PAx

To evaluate the function
v(z) = —(Az + Bu)' P(Az + Bu) — v Qu
=—(2’A" +u'B")P(Az 4+ Bu) — v Qu
= —2'A'PAx — v B’'PAx — v’ A’PBu— u'B’PBu — u'Qu
=—a'A'PAx — 2u'B’PAx — v/ (Q + B’PB)u

42 Chapter 2. Linear Algebra

Intermediate Quantitative Economics with Python

For simplicity, denote by S := (Q + B’PB) !B’ PA, then u = —Sx.
Regarding the second term —2u’ B’ P Az,
—2u'B’PAx = —22'S' B’ PAx
= 2/ A’PB(Q + B'PB)"'B'PAz

Notice that the term (Q + B’ PB)~! is symmetric as both P and Q are symmetric.
Regarding the third term —u’(Q + B’ PB)u,

—u/(Q+ B’PB)u=—x2'5"(Q + B'PB)Sx

— —2/A'PB(Q + B'PB)"'B'PAz

Hence, the summation of second and third terms is 2’ A’ PB(Q + B’PB) !B’ PAx.
This implies that

v(z) = —2'A’PAx — 2u'B’PAx — v (Q + B'PB)u

= —2'A'PAx + 2’ A’PB(Q + B'PB)"'B'PAx
= —a2/[A/PA— A'PB(Q + B'PB)"\B'PAlz

Therefore, the solution to the optimization problem v(xz) = —a’ Pz follows the above result by denoting P =

A'PA— A'PB(Q+ B'PB)"'B'PA

2.7. Exercises

43

Intermediate Quantitative Economics with Python

44

Chapter 2. Linear Algebra

CHAPTER
THREE

QR DECOMPOSITION

3.1 Overview

This lecture describes the QR decomposition and how it relates to
« Orthogonal projection and least squares
o A Gram-Schmidt process
« Eigenvalues and eigenvectors

We'll write some Python code to help consolidate our understandings.

3.2 Matrix Factorization

The QR decomposition (also called the QR factorization) of a matrix is a decomposition of a matrix into the product of
an orthogonal matrix and a triangular matrix.

A QR decomposition of a real matrix A takes the form
A=QR

where
« (@ is an orthogonal matrix (so that Q7'Q = I)
e R is an upper triangular matrix
We'll use a Gram-Schmidt process to compute a QR decomposition

Because doing so is so educational, we’ll write our own Python code to do the job

3.3 Gram-Schmidt process

We'll start with a square matrix A.
If a square matrix A is nonsingular, then a () R factorization is unique.
We'll deal with a rectangular matrix A later.

Actually, our algorithm will work with a rectangular A that is not square.

45

Intermediate Quantitative Economics with Python

3.3.1 Gram-Schmidt process for square A

Here we apply a Gram-Schmidt process to the columns of matrix A.

In particular, let
A:[‘h‘az"“‘an]

Let || - || denote the L2 norm.

The Gram-Schmidt algorithm repeatedly combines the following two steps in a particular order
« normalize a vector to have unit norm
« orthogonalize the next vector

To begin, we set u; = a; and then normalize:

Uy
Uy = aq, elzm
1

We orthogonalize first to compute u, and then normalize to create e,:

u
Uy = ay — (ay - €1)eq, €y = m
2

We invite the reader to verify that e; is orthogonal to e, by checking that e; - e; = 0.
The Gram-Schmidt procedure continues iterating.
Thus, for £ = 2, ... ,n — 1 we construct

Uk11
Ugy1 = Qpy1 — (ak+1 cep)ep — o — (ak+1 ‘€€ Crt1 = 7”“]: I
+1

Here (a; - ¢;) can be interpreted as the linear least squares regression coefficient of a; on e,

« itis the inner product of a; and e, divided by the inner product of e, where ¢, -e; = 1, as normalization has assured
us.

« this regression coefficient has an interpretation as being a covariance divided by a variance

It can be verified that

ap € Qg€ - Qp-€g
0 Aoy €y = A €
A:[al‘G’Z"“‘an]:[el‘e2""‘en] ; 252. n:2
0 0 a, - e,
Thus, we have constructed the decomposision
A=QR
where
Q:[al‘CL?‘ ‘an]:[el‘%‘ ‘en}
and
CLl 61 a/2 '61 a 61
n— 0 Qg - €4 a,, - €y
0 0 a :e

46 Chapter 3. QR Decomposition

Intermediate Quantitative Economics with Python

3.3.2 A not square

Now suppose that A is an n X m matrix where m > n.

Then a QR decomposition is

Ay €1 Qp-€ = Ap € Apyy-€p 0 Gyt €

O a .e e a .e a .e e a .e

A:[al‘a2‘...‘am]:[el‘62‘...‘6’”] : 2:2) n'2 ’I’L+1. 2 ’I’TL:2
0 O e an . en an+1 . en e am . en

which implies that

ay = (ay - eq)e;

as = (ay - eq)e; + (ag - e3)eq

an = (an ! €1>€1 + (an : 62)62 + et (an ! en>€n

Upi1 = (Apig - €1)eg + (A4 - €2)eq + o+ (a,,q - €,)e,

Ay = (am ! €1>61 + (am : 62)62 + et (a‘m ' en)en

3.4 Some Code

Now let’s write some homemade Python code to implement a QR decomposition by deploying the Gram-Schmidt process
described above.

import numpy as np
from scipy.linalg import gr

def QR _Decomposition (A) :
n, m = A.shape # get the shape of A

Q = np.empty((n, n)) # initialize matrix Q
u = np.empty((n, n)) # initialize matrix u
ul:, 0] = A[:, 0]

Q[:, 0] = ul:, 0] / np.linalg.norm(ufl:, 0])

for i in range(l, n):

ul:, 1] = A[:, 1]
for j in range(i):
ul:, i] -= (A[:, 1] @ Q[:, J1)Y * Q[:, J]1 # get each u vector
Q[:, 1] = ul:, 1] / np.linalg.norm(ul:, i]) # compute each e vetor
R = np.zeros((n, m))

for i in range(n):
for j in range (i, m):
R[i, 3] = Al:, J1 @ Q[:, 1i]

return Q, R

3.4. Some Code 47

Inter

mediate Quantitative Economics with Python

The preceding code is fine but can benefit from some further housekeeping.

We want to do this because later in this notebook we want to compare results from using our homemade code above with
the code for a QR that the Python scipy package delivers.

There can be be sign differences between the () and R matrices produced by different numerical algorithms.

All of these are valid QR decompositions because of how the sign differences cancel out when we compute Q R.

However, to make the results from our homemade function and the QR module in scipy comparable, let’s require that
@ have positive diagonal entries.

We do this by adjusting the signs of the columns in () and the rows in R appropriately.

To accomplish this we’ll define a pair of functions.

def

def

diag_sign(A):
"Compute the signs of the diagonal of matrix A"

D

np.diag(np.sign(np.diag(a)))
return D

adjust_sign(Q, R):

mirrmn
Adjust the signs of the columns in Q and rows in R to
impose positive diagonal of QO

mmn

D = diag_sign(Q)
Qf:y, :] =Q €D
R[’ :] =D @R
return Q, R
3.5 Example
Now let’s do an example.
A = np.array([(f2.0, 1.0, 0.0j1, 2.0, 0.0, 12.01, (0.0, 1.0, 1.011)
A = np.array([([1.0, 0.5, 0.2], [0.5, 0.5, 1.0], [0.0, 1.0, 1.0]])
A = np.array([[1.0, 0.5, 0.2], [0.5, 0.5, 1.0]])
A
array ([[1., 1., 0.1,
[1., 0., 1.1,
(0., 1., 1.11)
Q, R = adjust_sign (*QR_Decomposition (A))
Q
48 Chapter 3. QR Decomposition

Intermediate Quantitative Economics with Python

array([[0.70710678, -0.40824829, -0.57735027],
[0.70710678, 0.40824829, 0.57735027],
[0. , —0.81649658, 0.57735027]1])

array ([[1.41421356, 0.70710678, 0.707106787,
[O , —1.22474487, -0.40824829],
[O. L , 1.1547005411)

Let’s compare outcomes with what the scipy package produces

Q_scipy, R_scipy = adjust_sign(*gr (A))

print ('Our Q: \n', Q)
print ('\n")
print ('Scipy Q: \n', Q_scipy)

Our Q:
[[0.70710678 —-0.40824829 -0.57735027]
[0.70710678 0.40824829 0.57735027]
[0. -0.81649658 0.57735027]]

Scipy Q:

[[0.70710678 —-0.40824829 -0.57735027]
[0.70710678 0.40824829 0.57735027]
[0. -0.81649658 0.57735027]1
print ('Our R: \n', R)
print ('\n")
print ('Scipy R: \n', R_scipy)

Our R:
[[1.41421356 0.70710678 0.70710678]
[0. -1.22474487 -0.40824829]
[0. 0. 1.154700547]]
Scipy R:

[[1.41421356 0.70710678 0.70710678]
-1.22474487 -0.40824829]
0. 1.15470054]]

[O.
[O.
The above outcomes give us the good news that our homemade function agrees with what scipy produces.
Now let’s do a QR decomposition for a rectangular matrix A that is n x m with m > n.

A = np.array([[1, 3, 4], [2, 0, 91])

Q, R = adjust_sign (*QR_Decomposition (A))
QI R

(array ([[0.4472136 , -0.89442719],
[0.89442719, 0.4472136 11]),

(continues on next page)

3.5. Example 49

Intermediate Quantitative Economics with Python

array ([[2.23606798, 1.34164079, 9.8386991 1],
[O. , —2.68328157, 0.4472136]11]))

Q_scipy, R_scipy = adjust_sign(*gr (A))
Q_scipy, R_scipy

(array ([[0.4472136 , -0.89442719],
[0.89442719, 0.4472136 11),
array ([[2.23606798, 1.34164079, 9.8386991 1,
[O , —2.68328157, 0.4472136 11]))

(continued from previous page)

3.6 Using QR Decomposition to Compute Eigenvalues

Now for a useful fact about the QR algorithm.

The following iterations on the QR decomposition can be used to compute eigenvalues of a square matrix A.

Here is the algorithm:

1. Set Ay = A and form Ay = Qy R,

Form A; = Q; R, (i.e., form the Q)R decomposition of A;).
Form A, = R;(); and then A, = Q, R, .

A

Iterate to convergence.

Form A; = Ry(Q, . Note that A; is similar to A, (easy to verify) and so has the same eigenvalues.

6. Compute eigenvalues of A and compare them to the diagonal values of the limiting A,, found from this process.

Remark: this algorithm is close to one of the most efficient ways of computing eigenvalues!

Let’s write some Python code to try out the algorithm

def QR_eigvals (A, tol=le-12, maxiter=1000) :

"Find the eigenvalues of A using QR decomposition."

A_old = np.copy (A)
A_new = np.copy (A)

diff = np.inf

i=0
while (diff > tol) and (i < maxiter):
A_old[:, :] = A_new

Q, R = QR _Decomposition (A_old)

A_new([:, :] = R @ Q
diff = np.abs(A_new - A_old) .max()
i +=1

eigvals = np.diag(A_new)

return eigvals

Now let’s try the code and compare the results with what scipy.linalg.eigvals gives us

50

Chapter 3. QR Decomposition

Intermediate Quantitative Economics with Python

Here goes

experiment this with one random A matrix
A = np.random.random((3, 3))

sorted (QR_eigvals (A))

[np.float64(0.021152450618739087),
np.float64(0.3572399231461366),
np.float64(1.480900664173809)]

Compare with the scipy package.

sorted(np.linalg.eigvals (A))

[np.complex128(0.18919618688243722-0.206991393968735627),
np.complex128(0.18919618688243722+0.206991393968735627),
np.complex128 (1.4809006641738094+07)]

3.7 QR and PCA

There are interesting connections between the () R decomposition and principal components analysis (PCA).
Here are some.

1. Let X’ be a k x n random matrix where the jth column is a random draw from N (p, X) where p is k x 1 vector
of means and X is a k x k covariance matrix. We want n >> k — this is an “econometrics example”.

2. Form X’ = QR where Q is k x kand Ris k x n.
3. Form the eigenvalues of RR’, i.e., we'll compute RR’ = PAP’.
4. Form X’ X = QPAP’Q’ and compare it with the eigen decomposition X’ X = PAP'.
5. Tt will turn out that that A = A and that P = QP.
Let’s verify conjecture 5 with some Python code.

Start by simulating a random (n, k) matrix X.

k =5

n = 1000

generate some random moments

u = np.random.random(size=k)

C = np.random.random((k, k))

¥y =C.T @ C

X 1s random matrix where each column follows multivariate normal dist.
X = np.random.multivariate_normal (y, %, size=n)

X.shape

(1000, 5)

Let’s apply the QR decomposition to X".

3.7. QR and PCA 51

Intermediate Quantitative Economics with Python

Q, R = adjust_sign (*QR_Decomposition (X.T))

Check the shapes of @) and R.

Q.shape, R.shape
((5, 5), (5, 1000))
Now we can construct RR’ = PAP’ and form an eigen decomposition.

RR = R @ R.T

A, P_tilde = np.linalg.eigh (RR)
N = np.diag(A)

We can also apply the decomposition to X’ X = PAP'.
XX = X.T @ X

A_hat, P = np.linalg.eigh (XX)
N_hat = np.diag(A_hat)

Compare the eigenvalues that are on the diagonals of A and A.

A, A_hat

(array ([8.73576797e+00, 1.67398620e+02, 3.65942765e+02, 1.21149262e+03,
9.86963868e+03]),

array ([8.73576797e+00, 1.67398620e+02, 3.65942765e+02, 1.21149262e+03,
9.86963868e+03]))

Let’s compare P and QP

Again we need to be careful about sign differences between the columns of P and QZB.

QP_tilde = Q @ P_tilde

np.abs (P @ diag_sign(P) - QP_tilde @ diag_sign(QP_tilde)) .max()
np.float64(1.3850032232198828e-14)

Let’s verify that X’ X can be decomposed as Q PAP’ Q'

QPNPQ = Q @ P_tilde @ A @ P_tilde.T @ Q.T
np.abs (QPAPQ — XX) .max ()

np.float64(1.2278178473934531e-11)

52 Chapter 3. QR Decomposition

CHAPTER
FOUR

CIRCULANT MATRICES

4.1 Overview

This lecture describes circulant matrices and some of their properties.
Circulant matrices have a special structure that connects them to useful concepts including
« convolution
« Fourier transforms
 permutation matrices
Because of these connections, circulant matrices are widely used in machine learning, for example, in image processing.
We begin by importing some Python packages

import numpy as np
from numba import jit
import matplotlib.pyplot as plt

np.set_printoptions (precision=3, suppress=True)

4.2 Constructing a Circulant Matrix

To construct an N x N circulant matrix, we need only the first row, say,

[Co € C C3 €4 - CN—1]-

After setting entries in the first row, the remaining rows of a circulant matrix are determined as follows:

Co S Cy C3 €4 Cn
CN-1 Co € C €3 = Cn_2
CN—2 Cn-1 ¢ € € = Cn_3
C = : : : : P : “4.1)
Cs €4 Cy Cg Cq; Gy
Coy C3 ¢4 Cy Cg €
L ¢ Cy €3 ¢4 c5 - Ccy |

It is also possible to construct a circulant matrix by creating the transpose of the above matrix, in which case only the first
column needs to be specified.

Let’s write some Python code to generate a circulant matrix.

53

Intermediate Quantitative Economics with Python

@jit
def construct_cirlulant (row) :

N = row.size

C = np.empty ((N, N))

for i in range (N) :

Cl[i, 1:] = row[:N-1i]
Ccli, i] = row[N-i:]
return C
a simple case when N = 3

construct_cirlulant (np.array([1., 2., 3.1))

array ([[1., 2., 3.1,
[3., 1., 2.1
1

(2., 3., IND)

4.2.1 Some Properties of Circulant Matrices

Here are some useful properties:
Suppose that A and B are both circulant matrices. Then it can be verified that
o The transpose of a circulant matrix is a circulant matrix.
e A+ B is a circulant matrix
o AB is a circulant matrix
« AB=BA

Now consider a circulant matrix with first row

and consider a vector

a=lag a; - ay_]
The convolution of vectors ¢ and a is defined as the vector b = ¢ * a with components
n—1
b = Z Cr—iQ4
i=0
We use * to denote convolution via the calculation described in equation (4.2).

It can be verified that the vector b satisfies
b=CTa

where C7' is the transpose of the circulant matrix defined in equation (4.1).

4.2)

54 Chapter 4. Circulant Matrices

Intermediate Quantitative Economics with Python

4.3 Connection to Permutation Matrix

A good way to construct a circulant matrix is to use a permutation matrix.

Before defining a permutation matrix, we’ll define a permutation.

A permutation of a set of the set of non-negative integers {0, 1,2, ...} is a one-to-one mapping of the set into itself.
A permutation of a set {1,2, ..., n} rearranges the n integers in the set.

A permutation matrix is obtained by permuting the rows of an n X n identity matrix according to a permutation of the
numbers 1 to n.

Thus, every row and every column contain precisely a single 1 with O everywhere else.
Every permutation corresponds to a unique permutation matrix.

For example, the N x N matrix

60100 - 0
06 010 - 0
S @3
0000 -1
1000 - 0

serves as a cyclic shift operator that, when applied to an IV x 1 vector h, shifts entries in rows 2 through N up one row
and shifts the entry in row 1 to row .

Eigenvalues of the cyclic shift permutation matrix P defined in equation (4.3) can be computed by constructing

A 1 0 0 - 0
0 A 1 0 -« 0
pa=| " O _:A Lo 0
0 0 0 0 1
1 0 0 0 Y

and solving
det(P— M) = (=1)NMAN —1=0

Eigenvalues \; can be complex.
Magnitudes | A, | of these eigenvalues A, all equal 1.
Thus, singular values of the permutation matrix P defined in equation (4.3) all equal 1.

It can be verified that permutation matrices are orthogonal matrices:

pPp =1

4.3. Connection to Permutation Matrix 55

https://mathworld.wolfram.com/PermutationMatrix.html

Intermediate Quantitative Economics with Python

4.4 Examples with Python

Let’s write some Python code to illustrate these ideas.

@jit
def construct_P (N):

P = np.zeros ((N, N))
for i in range (N-1):
P[i, i+1] = 1

P[-1, 0] =1

return P

P4 = construct_P (4)

P4
array([[0., 1., 0., 0.1,
@y 0oy &y Ocl,
(0., 0., 0., 1.1,
(1., 0., 0., 0.11)

compute the eigenvalues and eigenvectors
A, Q = np.linalg.eig(P4)

for i in range(4):
print (£'A{i} = {A[i]l:.1f} \nvec{i} = {Q[i, :]1}\n")

A0 = -1.0+0.07
vecO = [-0.5+0.3 0. +#0.55 0. -0.5j —0.5+0.5]

Al = 0.0+1.07
vecl = [0.540.3 —0.5+0.9 —0.5-0.3 —0.5+0.5]

A2 = 0.0-1.07
[

1
vec2 = [-0.5+0.] 0 =0:87 0o 0859 =0.5F0.9 |

A3 = 1.040.07
vec3 = [0.540.3 0.5-0.3 0.5+0.3 —0.5+0.75]
In graphs below, we shall portray eigenvalues of a shift permutation matrix in the complex plane.
These eigenvalues are uniformly distributed along the unit circle.
They are the n roots of unity, meaning they are the n numbers 2 that solve 2™ = 1, where z is a complex number.

In particular, the n roots of unity are

2mjk
zzexp(%), k=0,...,N—1

where j denotes the purely imaginary unit number.
fig, ax = plt.subplots (2, 2, figsize=(10, 10))

(continues on next page)

56 Chapter 4. Circulant Matrices

Intermediate Quantitative Economics with Python

for i, N in enumerate([3, 4, 6, 8]):
row_1i =1 // 2
col i =1 % 2
P = construct_P (N)
A, Q = np.linalg.eig(P)
circ = plt.Circle((0, 0), radius=1,

ax[row_1i, col_i].add_patch(circ)
for j in range (N) :
ax[row_i, col_i].scatter(A[j].real,

col_1i].set_title(f'N = /N
col_1i].set_xlabel('real')
col_i].set_ylabel ('imaginary'

ax[row_i,
ax[row_1i,
ax[row_i,

")

plt.show ()

edgecolor='b"',

(continued from previous page)

facecolor="None')

c="b'")

Alj] .imag,

)

4.4. Examples with Python

57

Intermediate Quantitative Economics with Python

imaginary

imaginary

1.00 A

0.75 7

0.50 1

0.25 4

0.00 4

—0.25

—0.50

—0.75 A

—1.00 A

imaginary

-1.0

T
0.5

T
0.0
real

1.00 A

0.75 1

0.50 4

0.25 1

0.00 1

—0.25 1

—0.50 A

—0.75 A

—1.00

imaginary

For a vector of coefficients {c;

Consider an example in which N = 8 andletw = e

n—1
i=0 »

T
0.0
real

eigenvectors of P are also eigenvectors of

0.5

1.00 4

0.75 7

0.50 1

0.25 4

0.00 4

—0.25

—0.50

—0.75 A

—1.00 A

-1.0

T T
—0.5 0.0 0.5 1.0
real
N =

1.00 +

0.75 1

0.50 4

0.25 1

0.00 4

—0.25 1

—0.50 A

—0.75

—1.00

real

C == COI + Cl_P + C2P2 + se + CN71PN71.

—2mj/N

It can be verified that the matrix Fy of eigenvectors of Fy is

[T S U S S S
S & & & &g &g

The matrix Fy defines a Discete Fourier Transform.

£

N O Otk W N

SERSIRSS

AR

14

—

S
'S

49

g & 8 g &8

58

Chapter 4. Circulant Matrices

https://en.wikipedia.org/wiki/Discrete_Fourier_transform

Intermediate Quantitative Economics with Python

To convert it into an orthogonal eigenvector matrix, we can simply normalize it by dividing every entry by /8.
« stare at the first column of Fg above to convince yourself of this fact
The eigenvalues corresponding to each eigenvector are {w’ }]7:0 in order.

def construct_F (N):

w = np.e ** (-complex (0, 2*np.pi/N))

|
Il

np.ones ((N, N), dtype=complex)
for i in range(l, N):
F[i, 1:] = w ** (i * np.arange(l, N))

return F, w

F8, w = construct_F (8)

w
(0.7071067811865476-0.70710678118654757)
F8
array ([[1. +0.7 g 4 +0.7 p d +0.7 g dg +0.7 7
1. +0.3 o 1 +0.7 , 1. +0.3 , 1. +0.3 1l 5
[1. +0.73 , 0.707-0.7073, O. -1.3 , —=0.707-0.7077,
=i -0.3 , —0.707+0.7073, -0. +1.7 , 0.707+0.70731,
[1. +0.3 ;7 O -1.3 p =g -0.73 7 =0c +1.3 7
1. +0.3 , 0. -1.73 g =g =009 g =0c +1.3 1 g
[1. +0.3 , —0.707-0.7073, -0. +1.7 , 0.707-0.7073,
=d. -0.3 , 0.707+0.7073, O. -1.73 , —0.707+0.707731,
[1. +0.73 g =d.c -0.3 g o +0.3 p =4 -0.3 7
1. +0.7 g =l -0.7 7 Ao +0.7 p =g -0.7 1 g
[1. +0.7 , —0.707+0.7073, O. -1.3 , 0.707+0.7077,
=4, -0.3 , 0.707-0.7073, -0. +1.3 , —0.707-0.70731,
[1. +0.3 7z =0 +1.73 7 =g -0.7 , O. =il o 7
1. +0.3 g =0c +1.3 7 =i -0.73 , 0. -1.3 1
[1. +0.73 , 0.707+0.7073, -0. +1.3 , —=0.707+0.70773,
=i -0.3 , —0.707-0.7073, O -1.73 , 0.707-0.707311)

normalize
Q8 = F8 / np.sqgrt (8)

verify the orthogonality (unitarity)
Q8 @ np.conjugate (Q8)

array([[1.+0.j, -0.+0.3, -0.+0.j, -0.+0.3, -0.+0.3, 0.+0.3j, 0.+0.73,
0.+0.31,
[-0.-0.3, 1.+0.3, -0.+0.3, -0.+0.3, -0.+0.3, -0.+0.3, 0.+0.7,
0.+0.31,
[-0.-0.3, -0.-0.35, 1.40.3, -0.+0.3, -0.40.3, -0.+0.3, 0.+0.7,
@oF0c91
[-0.-0.3, -0.-0.3, -0.-0.3, 1.+0.j, -0.+40.3, -0.+0.3, -0.+0.7,
-0.+0.31,
[S0.=0o7p; =0.=0.3,; =0.=0o7p; =0=0c3; LoT@oYy =003, =BorloI),

(continues on next page)

4.4. Examples with Python 59

Intermediate Quantitative Economics with Python

(continued from previous page)

-0.40.451,

[0.-0.§, -0.-0.3, -0.-0.3, -0.-0.9, -0.-0.3, 1.+40.9, -0.+0.7,
-0.40.51,

[0.-0.§, 0.-0.3, 0.-0.3, -0.-0.3, -0.-0.3, -0.-0.9, 1.+0.7,
-0.40.51,

[0.-0., 0.-0.3, 0.-0.j, -0.-0.3, -0.-0.3, -0.-0.3, -0.-0.7,
1.40.911)

Let’s verify that kth column of Qy is an eigenvector of Py with an eigenvalue w*.

P8 = construct_P (8)

diff_arr = np.empty (8, dtype=complex)

for j in range(8):
diff = P8 @ Q8[:, j] — w ** 3 * Q8[:, 7]
diff_arr[j] = diff @ diff.T

diff _arr

array ([0.40.3, -0.+0.3, -0.40.3, -0.+0.3, —-0.40.3, -0.+0.3, —0.+0.7,
-0.+40.31)

4.5 Associated Permutation Matrix

Next, we execute calculations to verify that the circulant matrix C' defined in equation (4.1) can be written as
C=cyl+c,P+-+c, Pt

and that every eigenvector of P is also an eigenvector of C.

‘We illustrate this for N = 8 case.

c = np.random.random(8)

array([0.049, 0.979, 0.58 , 0.146, 0.515, 0.341, 0.528, 0.798])

C8 = construct_cirlulant (c)
Compute ¢yl + ¢, P+ +c, P L.
N = 8

C = np.zeros ((N, N))
P np.eye (N)

for i in range (N
€ = e[i] *
P =P8 @ P

) 3
P

60 Chapter 4. Circulant Matrices

Intermediate Quantitative Economics with Python

@
array([[0.049, 0.979, 0.58 , 0.146, 0.515, 0.341, 0.528, 0.798],
[0.798, 0.049, 0.979, 0.58 , 0.146, 0.515, 0.341, 0.528],
[0.528, 0.798, 0.049, 0.979, 0.58 , 0.146, 0.515, 0.341],
[0.341, 0.528, 0.798, 0.049, 0.979, 0.58 , 0.146, 0.515],
[0.515, 0.341, 0.528, 0.798, 0.049, 0.979, 0.58 , 0.14e6],
[0.146, 0.515, 0.341, 0.528, 0.798, 0.049, 0.979, 0.58 1,
[0.58 , 0.146, 0.515, 0.341, 0.528, 0.798, 0.049, 0.979],
[0.979, 0.58 , 0.146, 0.515, 0.341, 0.528, 0.798, 0.049]11)
C8
array([[0.049, 0.979, 0.58 , 0.146, 0.515, 0.341, 0.528, 0.798],
[0.798, 0.049, 0.979, 0.58 , 0.146, 0.515, 0.341, 0.528],
[0.528, 0.798, 0.049, 0.979, 0.58 , 0.146, 0.515, 0.341],
[0.341, 0.528, 0.798, 0.049, 0.979, 0.58 , 0.146, 0.515],
[0.515, 0.341, 0.528, 0.798, 0.049, 0.979, 0.58 , 0.14e6],
[0.146, 0.515, 0.341, 0.528, 0.798, 0.049, 0.979, 0.58 1],
[0.58 , 0.146, 0.515, 0.341, 0.528, 0.798, 0.049, 0.979],
[0.979, 0.58 , 0.146, 0.515, 0.341, 0.528, 0.798, 0.049]11)

Now let’s compute the difference between two circulant matrices that we have constructed in two different ways.

np.abs(C - C8) .max ()

np.float64(0.0)

The kth column of Py associated with eigenvalue w"~!

Z;:O cjwhk.

A_C8 = np.zeros (8, dtype=complex)

is an eigenvector of Cy associated with an eigenvalue

for j in range(8):
for k in range (8):
A_C8[Jj] += clk] * w ** (J * k)

A_CS8

array ([3.936+0.3 , 0.447-0.0413, -0.543-0.3763, -1.378+0.0617,
-0.591-0.5 , -1.378-0.0613, -0.543+0.3765, 0.447+0.0415])

We can verify this by comparingC8 @ Q8[:, j]withA_C8[j] * Q8[:, Jl.

verify

for j in range(8):
diff = C8 @ Q8[:, Jj] - A_C8[3]1 * Q8[:, 7l
print (diff)

[0.40.9 0.40.9 0.40.3 0.40.3 0.40.3 0.40.3 0.40.3 0.+0.7]
[-0.-0.9 -0.-0.F -0.-0.3 -0.-0.3 —-0.-0.9 —-0.40.3 -0.40.35 0.-0.7]
[0.-0.§ -0.-0.F -0.-0.3 -0.40.3 0.-0.3 -0.-0.3 -0.-0.5 -0.-0.7]
[0.40.9 -0.-0.3 -0.40.3 0.40.3 -0.-0.9 —0.40.3 0.-0.3 -0.-0.7]
[-0.40.§ 0.-0.3 -0.40.3 0.-0.3 -0.+0.3 0.-0.3 -0.-0.35 0.-0.7]

(continues on next page)

4.5. Associated Permutation Matrix 61

Intermediate Quantitative Economics with Python

(continued from previous page)

[-0.-0.§ 0.-0.§ 0.40.3 -0.-0.3 0.-0.3 0.40.3 -0.-0.3 0.-0.7]
[-0.40.9 -0.-0.5 0.-0.3 0.40.3 -0.+0.3 -0.-0.3 0.-0.3 0.-0.4]
[0.-0.§ 0.-0.5 0.-0.3 0.-0.3 0.-0.3 0.4+0.3 0.40.3 -0.-0.7]

4.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) allows us to represent a discrete time sequence as a weighted sum of complex
sinusoids.

Consider a sequence of N real number {x; jli o

The Discrete Fourier Transform maps {x;}};! into a sequence of complex numbers { X, } 2"

where
N—1 .
X, = g T, e TR
n=0
def DFT (x):

"The discrete Fourier transform."

N = len(x)
w = np.e ** (—complex (0, 2*np.pi/N))
X = np.zeros (N, dtype=complex)
for k in range (N) :
for n in range(N) :
X[k] += x[n] * w ** (k * n)
return X

Consider the following example.

n=20,1
otherwise

1
xTL:{ /2
0

X = np.zeros (10)
x[0:2] = 1/2
X

array([(0.5, 0.5, 0. , 0., 0., 0., O. , 0., 0., 0. 1)

Apply a discrete Fourier transform.

X = DFT(x)
X
array([1. +0.j , 0.905-0.2943, 0.655-0.4763, 0.345-0.4767,
0.095-0.2943, -0. +0.3 , 0.095+0.294j, 0.345+0.4767,
0.655+0.4763, 0.905+0.2947])
62 Chapter 4. Circulant Matrices

Intermediate Quantitative Economics with Python

We can plot magnitudes of a sequence of numbers and the associated discrete Fourier transform.
def plot_magnitude (x=None, X=None) :

data = []

names = []

xs = []

if (x is not None):
data.append (x)
names.append('x")
xs.append('n')

if (X is not None) :
data.append (X)
names.append ('X")
xs.append('J")

num = len (data)
for i in range (num) :
n = datal[i].size
plt.figure(figsize=(8, 3))
plt.scatter (range(n), np.abs(datal[i]))
plt.vlines (range(n), 0, np.abs(datal[i]), color='b'")

plt.xlabel (xs[i])
plt.ylabel ('magnitude')
plt.title (names([i])
plt.show ()

plot_magnitude (x=x, X=X)

0549 ¢ L

o
w
i

magnitude
=
rJ
1

0.0 L L]] @]]]

B

4.6. Discrete Fourier Transform 63

Intermediate Quantitative Economics with Python

l1.09 @

0.8 1 ? ?

0.6 L Ly

0.4 1

magnitude

0.2 1

The inverse Fourier transform transforms a Fourier transform X of = back to .

The inverse Fourier transform is defined as
1 kn
z, = ; NXke%(W)’, n=01,..,N—1

def inverse_ transform(X) :

N = len (X)
w = np.e ** (complex (0, 2*np.pi/N))

x = np.zeros (N, dtype=complex)
for n in range (N):
for k in range (N) :
x[n] 4= X[k] * w ** (k * n) / N

return x
inverse_transform (X)

array([0.5+0.j, 0.5-0.3, -0. -0.3, -0. -0.3, -0. -0.3, —-0. —0.3,
-0. +0.3, -0. +0.9, —-0. +0.3, -0. +0.31)

Another example is
=2 <2 11) =0,1,2,---19
T, = 2co0s 7T40n , n=20,1,2,

Since N = 20, we cannot use an integer multiple of 2—10 to represent a frequency le(l)'

To handle this, we shall end up using all IV of the availble frequencies in the DFT.

Since 43 is in between 13 and 2 (each of which is an integer multiple of 55), the complex coefficients in the DFT have

their largest magnitudes at k = 5, 6, 15, 16, not just at a single frequency.

N = 20
np.empty (N)

X

(continues on next page)

64 Chapter 4. Circulant Matrices

Intermediate Quantitative Economics with Python

(continued from previous page)
for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)

X = DFT (x)

plot_magnitude (x=x, X=X)

X
201 @
[] ? ? L]
P P
p L]
15 - o .
3
3 [] i
(=]
[i1x]
£
0.5 -
0.0 - T ° T
T T T T T T T T
0.0 2.5 5.0 75 10.0 12.5 15.0 17.5
n
X
'l ® ® i
12 -
10 -
5 8
=
5 61
5]
E 4]
SREA [111] 1
O_
T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

What happens if we change the last example to z,, = 2cos (27 3n)?

Note that % is an integer multiple of %.

N = 20
np.empty (N)

X

for j in range (N):
x[j] = 2 * np.cos(2 * np.pi * 10 * j / 40)

4.6. Discrete Fourier Transform 65

Intermediate Quantitative Economics with Python

X = DFT (x)

plot_magnitude (x=x, X=X)

X
2.0 L J [] L I i L] T i L T
1.5+
L H]
=
2
= 1.0 -
=]
[ix]
£
0.5 4
0.0]] o] L] i @ L] L @
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
n
X
201 L [
15 ~
U
=
2
= 10 -
=]
[1%)
£
5 -
0 e @ @ 9 @ e @& @ @ @& 9 o @ 0 e @ @ @
T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

If we represent the discrete Fourier transform as a matrix, we discover that it equals the matrix F'y; of eigenvectors of the
permutation matrix Py.

We can use the example where z,, = 2 cos (27‘(%71) , n=0,1,2 19 to illustrate this.

N = 20
x = np.empty (N)

for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)

66 Chapter 4. Circulant Matrices

Intermediate Quantitative Economics with Python

array ([2. , -0.313, -1.%902, 0.908, 1.618, -1.414, -1.176, 1.782,
0, 6lE, =L.978, =0 , 1.975, -0.e618, -1.782, 1.176, 1.414,
-1.618, -0.908, 1.902, 0.313])

First use the summation formula to transform x to X.

X = DFT (x)
X

array ([2. +0.3 , 2. +0.5583, 2. +1.2183, 2. +2.1745, 2. +4.0877,
2.+12.7853, 2.-12.4663, 2. -3.7515, 2. -1.8013, 2. -0.7787,
2. -0.3 , 2. +0.7783, 2. +1.8019, 2. +3.7513, 2.+12.4667,
2.-12.7853, 2. -4.0873, 2. -2.1745, 2. -1.2183, 2. -0.5583])

Now let’s evaluate the outcome of postmultiplying the eigenvector matrix F}, by the vector x, a product that we claim

should equal the Fourier tranform of the sequence {z,, }-!.
F20, _ = construct_F (20)
F20 @ x
array([2. +0.5 , 2. +0.5589, 2. +1.2185, 2. +2.1743, 2. +4.0877,
2.+12.7859, 2.-12.46653, 2. -3.7513, 2. -1.8013, 2. -0.7787,
2. -0.5 , 2. +0.7783, 2. +1.8013, 2. +3.7519, 2.+12.4667,
2o=lRc 1883, A =4.0873, Ao =B.dT43), &A. =d.2AilBg, 2. =0.85E3])
Similarly, the inverse DFT can be expressed as a inverse DFT matrix Fy'.
F20_inv = np.linalg.inv (F20)
F20_inv @ X
array([2. -0.3, -0.313-0.3, -1.902+0.3, 0.908-0.3, 1.618-0.7,

o

-1.414+40.5, -1.176+0.5, 1.782+0.3, 0.618-0.3, -1.975-0.7,
-0. +0.3, 1.975-0.3, -0.618-0.3, —-1.782+0.3, 1.176+0.7,
1.414-0.5, -1.618-0.9, -0.908+0.3, 1.902+0.3, 0.313-0.31)

4.6. Discrete Fourier Transform 67

Intermediate Quantitative Economics with Python

68

Chapter 4. Circulant Matrices

CHAPTER
FIVE

SINGULAR VALUE DECOMPOSITION (SVD)

5.1 Overview

The singular value decomposition (SVD) is a work-horse in applications of least squares projection that form founda-
tions for many statistical and machine learning methods.

After defining the SVD, we’ll describe how it connects to
« four fundamental spaces of linear algebra
« under-determined and over-determined least squares regressions
« principal components analysis (PCA)

Like principal components analysis (PCA), DMD can be thought of as a data-reduction procedure that represents salient
patterns by projecting data onto a limited set of factors.

In a sequel to this lecture about Dynamic Mode Decompositions, we'll describe how SVD’s provide ways rapidly to compute
reduced-order approximations to first-order Vector Autoregressions (VARs).

5.2 The Setting

Let X be an m x n matrix of rank p.
Necessarily, p < min(m,n).
In much of this lecture, we'll think of X as a matrix of data in which
« each column is an individual - a time period or person, depending on the application
« each row is a random variable describing an attribute of a time period or a person, depending on the application
We'll be interested in two situations
« A short and fat case in which m << n, so that there are many more columns (individuals) than rows (attributes).
« A tall and skinny case in which m >> n, so that there are many more rows (attributes) than columns (individuals).
We'll apply a singular value decomposition of X in both situations.

In the m << n case in which there are many more individuals n than attributes m, we can calculate sample moments of
a joint distribution by taking averages across observations of functions of the observations.

In this m << n case, we'll look for patterns by using a singular value decomposition to do a principal components
analysis (PCA).

In the m >> n case in which there are many more attributes m than individuals n and when we are in a time-series
setting in which n equals the number of time periods covered in the data set X, we’ll proceed in a different way.

69

Intermediate Quantitative Economics with Python

We'll again use a singular value decomposition, but now to construct a dynamic mode decomposition (DMD)

5.3 Singular Value Decomposition

A singular value decomposition of an m x n matrix X of rank p < min(m,n) is

X=UxV" 5.1
where
Ut =1 U'U=1
Vvl =1 Viv=I
and

« U is an m x m orthogonal matrix of left singular vectors of X
o Columns of U are eigenvectors of XX "
o Visann x n orthogonal matrix of right singular vectors of X
« Columns of V are eigenvectors of X ' X

+ X is anm X n matrix in which the first p places on its main diagonal are positive numbers o4, 0y, ..., 0, called
singular values; remaining entries of X are all zero

« The p singular values are positive square roots of the eigenvalues of the m x m matrix X X " and also of the n x n
matrix X' X

« We adopt a convention that when U is a complex valued matrix, U ' denotes the conjugate-transpose or
Hermitian-transpose of U, meaning that Ui; is the complex conjugate of U ;.

« Similarly, when V is a complex valued matrix, VT denotes the conjugate-transpose or Hermitian-transpose of
\%

The matrices U, X, V entail linear transformations that reshape in vectors in the following ways:

» multiplying vectors by the unitary matrices U and V rotates them, but leaves angles between vectors and lengths
of vectors unchanged.

« multiplying vectors by the diagonal matrix X leaves angles between vectors unchanged but rescales vectors.

Thus, representation (5.1) asserts that multiplying an n x 1 vector y by the m X n matrix X amounts to performing the
following three multiplications of y sequentially:

« rotating y by computing V' "y

« rescaling V' "y by multiplying it by

« rotating XV "y by multiplying it by U
This structure of the m x n matrix X opens the door to constructing systems of data encoders and decoders.
Thus,

« VTyis an encoder

«) is an operator to be applied to the encoded data

U is a decoder to be applied to the output from applying operator X to the encoded data

70 Chapter 5. Singular Value Decomposition (SVD)

Intermediate Quantitative Economics with Python

We'll apply this circle of ideas later in this lecture when we study Dynamic Mode Decomposition.
Road Ahead

What we have described above is called a full SVD.

In a full SVD, the shapes of U, ¥, and V' are (m, m), (m,n), (n, n), respectively.

Later we'll also describe an economy or reduced SVD.

Before we study a reduced SVD we'll say a little more about properties of a full SVD.

5.4 Four Fundamental Subspaces

Let € denote a column space, N denote a null space, and R denote a row space.
Let’s start by recalling the four fundamental subspaces of an m x n matrix X of rank p.

« The column space of X, denoted C(X), is the span of the columns of X, i.e., all vectors y that can be written as
linear combinations of columns of X. Its dimension is p.

« The null space of X, denoted V(.X) consists of all vectors y that satisfy Xy = 0. Its dimension is n — p.

« The row space of X, denoted R(X) is the column space of X '. It consists of all vectors z that can be written as
linear combinations of rows of X. Its dimension is p.

« The left null space of X, denoted V(X T), consist of all vectors z such that X"z = 0. Its dimension is m — p.

For a full SVD of a matrix X, the matrix U of left singular vectors and the matrix V of right singular vectors contain
orthogonal bases for all four subspaces.

They form two pairs of orthogonal subspaces that we’ll describe now.
Let u,;,7 = 1,...,m be the m column vectors of U and let v,,7 = 1, ... ,n be the n column vectors of V.
Let’s write the full SVD of X as
X, 0 T
X=[U, Ug] [7 0] Ve Vgl (5.2)

where 3, is a p x p diagonal matrix with the p singular values on the diagonal and

Up=lu - wl, Ugp=lup uy
Vi = [Ul Up] , Up= [Up+1 "'un]
Representation (5.2) implies that
X, 0
X[V, Vgl =[U, Ug [Op O]
or
XV, =U.%
Lo (5.3)
XVp=0
or
Xv, =ou;,, 1=1,...,p 5.4)

Xv, =0, 1=p+1,..,n

Equations (5.4) tell how the transformation X maps a pair of orthonormal vectors v;, v; for i and j both less than or equal

to the rank p of X into a pair of orthonormal vectors u,, u.

5.4. Four Fundamental Subspaces 71

Intermediate Quantitative Economics with Python

Equations (5.3) assert that

C(X) =cU,)
N(X) =C(Vg)

Taking transposes on both sides of representation (5.2) implies

XTU, Ugl=[Vy Vg FP O]

0 0
or
XU, =V, %
L= LT (5.5)
XTUR == 0
or
X", =0, i=1,...,p
(5.6)

X'u; =0 i=p+1,...,m

Notice how equations (5.6) assert that the transformation X " maps a pair of distinct orthonormal vectors w,, u ; fori and
J both less than or equal to the rank p of X into a pair of distinct orthonormal vectors v;, v; .
Equations (5.5) assert that
RX)=e(XT)=0C(V)
N(XT)=C(Ug)
Thus, taken together, the systems of equations (5.3) and (5.5) describe the four fundamental subspaces of X in the
following ways:

C(X) =C(Uy)
N(XT) =C(Ug)

R(X)=c(XT)=C(Vy) (5.7
N(X) =C(VR)

Since U and V' are both orthonormal matrices, collection (5.7) asserts that
» U, is an orthonormal basis for the column space of X
o Up, is an orthonormal basis for the null space of X
 V} is an orthonormal basis for the row space of X
o Vg is an orthonormal basis for the null space of X

We have verified the four claims in (5.7) simply by performing the multiplications called for by the right side of (5.2) and
reading them.

The claims in (5.7) and the fact that U and V' are both unitary (i.e, orthonormal) matrices imply that
« the column space of X is orthogonal to the null space of X "
« the null space of X is orthogonal to the row space of X
Sometimes these properties are described with the following two pairs of orthogonal complement subspaces:
 C(X) is the orthogonal complement of N (X T)
o R(X) is the orthogonal complement NV (X)

Let’s do an example.

72 Chapter 5. Singular Value Decomposition (SVD)

Intermediate Quantitative Economics with Python

import numpy as np
import numpy.linalg as LA
import matplotlib.pyplot as plt

Having imported these modules, let’s do the example.
np.set_printoptions (precision=2)

Define the matrix

A = np.array([[1, 2, 3, 4, 51,
[2, 3, 4, 5, 6],
3, 4, 5, 6, 71,
[4, 5, 6, 7, 8],
[5, 6, 7, 8, 911)

’

~
~

Compute the SVD of the matrix
U, S, V = np.linalg.svd(A,full_matrices=True)

Compute the rank of the matrix
rank = np.linalg.matrix_rank (A)

Print the rank of the matrix
print ("Rank of matrix:\n", rank)
print ("S: \n", S)

Compute the four fundamental subspaces
row_space = U[:, :rank]

col_space = V[:, :rank]

null_space = V[:, rank:]

left_null_space = U[:, rank:]

print ("U:\n", U)

print ("Column space:\n", col_space)
print ("Left null space:\n", left_null_space)
("V.T:\n", V.T)

print ("Row space:\n", row_space.T)

("Right null space:\n", null_space.T)

print

print

Rank of matrix:

2
SE

[2.69e+01 1.86e+00 1.20e-15 2.24e-16 5.82e-17]
U
[-0.27 -0.73 0.63 -0.06 0.06]
-0.35 -0.42 -0.69 -0.45 0.12]
-0.43 -0.11 -0.24 0.85 0.12]
-0.51 0.19 0.06 -0.1 -0.83]
[-0.59 0.5 0.25 -0.24 0.53]
Column space:

[
[
[
[

]

[[=0.27 =0.39]

[0.73 0.42]
0.82 =0,65]
0.54 -0.39]
0.06 -0.35]]

[
[
[_
Left null space:

[[0.63 -0.06 0.06]

(continues on next page)

5.4. Four Fundamental Subspaces 73

Intermediate Quantitative Economics with Python

(continued from previous page)

0.69 -0.45 0.12
0.24 0.85 0.12
0,06 =0.d =083
0.25 -0.24 0.53

-0.27 0.73 0.32 0.54 -0.06]
0.35 0.42 -0.65 -0.39 -0.35]
0.43 0.11 0.02 -0.29 0.85]

-0.51 -0.19 0.61 -0.41 -0.4]
0.59 -0.5 -0.31 0.55 -0.04]

Row space:

[[=0.287 =088 =048 =091 =0,59]
[-0.73 -0.42 -0.11 0.19 0.5 1]

Right null space:

[[-0.43 0.11 0.02 -0.29 0.85]
[-0.51 -0.19 0.61 -0.41 -0.4]
[-0.59 -0.5 -0.31 0.55 -0.047]]

]

5.5 Eckart-Young Theorem

Suppose that we want to construct the best rank r approximation of an m x n matrix X.

By best, we mean a matrix X,. of rank r < p that, among all rank r matrices, minimizes
[[X — X, ||

where || - || denotes a norm of a matrix X and where X, belongs to the space of all rank r matrices of dimension m X n.

Three popular matrix norms of an m x n matrix X can be expressed in terms of the singular values of X

+ the spectral or [* norm || X|[, = max, o Hﬁ;ﬂ” =0
+ the Frobenius norm || X||p = /0] 4 - + 02

« the nuclear norm || X||y =0y + - + 0,

The Eckart-Young theorem states that for each of these three norms, same rank r matrix is best and that it equals
X, = o, U\ VT + 0yU, V| + -4 0,U, VT (5.8)
This is a very powerful theorem that says that we can take our m x n matrix X that in not full rank, and we can best

approximate it by a full rank p x p matrix through the SVD.

Moreover, if some of these p singular values carry more information than others, and if we want to have the most amount
of information with the least amount of data, we can take r leading singular values ordered by magnitude.

We'll say more about this later when we present Principal Component Analysis.
You can read about the Eckart-Young theorem and some of its uses here.

We'll make use of this theorem when we discuss principal components analysis (PCA) and also dynamic mode decom-
position (DMD).

74 Chapter 5. Singular Value Decomposition (SVD)

https://en.wikipedia.org/wiki/Low-rank_approximation

Intermediate Quantitative Economics with Python

5.6 Full and Reduced SVD’s

Up to now we have described properties of a full SVD in which shapes of U, 3, and V' are (m,m), (m,n), (n,n),
respectively.

There is an alternative bookkeeping convention called an economy or reduced SVD in which the shapes of U, ¥ and V'
are different from what they are in a full SVD.

Thus, note that because we assume that X has rank p, there are only p nonzero singular values, where p = rank(X) <
min (m, n).

A reduced SVD uses this fact to express U, X, and V' as matrices with shapes (m, p), (p,p), (n, p).
You can read about reduced and full SVD here https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
For a full SVD,
Uu' =1 U'U=1
Vv =1 ViV =I
But not all these properties hold for a reduced SVD.
Which properties hold depend on whether we are in a tall-skinny case or a short-fat case.
« In a tall-skinny case in which m >> n, for a reduced SVD
UUT +1 U'U=1
Vv =1 ViV =I
« In a short-fat case in which m << n, for a reduced SVD
Uu' =1 U'U=1
Vv =1 VIV £T

When we study Dynamic Mode Decomposition below, we shall want to remember these properties when we use a reduced
SVD to compute some DMD representations.

Let’s do an exercise to compare full and reduced SVD’s.
To review,
 ina full SVD
-Uismxm
- XYismxn
- Visnxn
« in areduced SVD
-Uismxp
- XispXp
- Visnxp
First, let’s study a case in whichm =5 > n = 2.

(This is a small example of the tall-skinny case that will concern us when we study Dynamic Mode Decompositions
below.)

5.6. Full and Reduced SVD’s 75

https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html

Intermediate Quantitative Economics with Python

import numpy as np

X = np.random.rand(5,2)

U, S, V = np.linalg.svd (X, full_matrices=True) # full SVD

Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print ('U, S, V =")

U, 8, ¥
U, S, V=
(array([[-0.17, -0.13, -0.27, -0.73, -0.6 1,
[-0.55, -0.64, -0.37, 0.39, -0.02],
[-0.37, -0.24, 0.88, -0.09, -0.13],
[-0.5, 0.68, -0.05, 0.35, -0.41],
[-0.53, 0.23, -0.1 , -0.44, 0.68]]),
array ([1.7, 0.71),
array([[-0.87, -0.5],
[0.5, -0.8711))
print ('Uhat, Shat, Vhat = ')

Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array ([[-0.17, -0.13],
[-0.55, -0.64],
[-0.37, -0.24],
[-0.5 , 0.68],
[-0.53, 0.2311),
array ([1.7, 0.71),
array([[-0.87, -0.5 1,
[0.5, -0.8711))

rr = np.linalg.matrix_rank (X)
print (f'rank of X = {rr}')

rank of X = 2

Properties:
o Where U is constructed viaa full SVD, U'U = [, ., andUU" =1,

« Where U is constructed via a reduced SVD, although UU=1I it happens that oo *1um

- Tpxp’

We illustrate these properties for our example with the following code cells.

UTU = U.TQU

UUT = UQU.T

print ('UUT, UTU = ')
UuT, UTU

uuT, UTU =

(array ([[1.00e+00, 1.16e-16, 1.63e-16, 2.20e-16, 2.53e-16],

[LodBe=il6, i.00eF00, 2Z.966=l6, =2.35e=l6, =2.19%==l7],

[1.63e-16, 2.56e-16, 1.00e+00, 3.70e-17, 9.90e-17],
(continues on next page)

76 Chapter 5. Singular Value Decomposition (SVD)

Intermediate Quantitative Economics with Python

(continued from previous page)

[2.20e-16, -2.35e-16, 3.70e-17, 1.00e+00, 3.70e-16],
[2.53e-16, —-2.1%e-17, 9.90e-17, 3.70e-16, 1.00e+00]]),
array ([[1.00e+00, 2.42e-17, 8.78e-17, 1.56e-16, 2.63e-16],
[2.42e-17, 1.00e+00, 4.91e-17, -1.73e-16, -8.87e-17],
[8.78e-17, 4.91e-17, 1.00e+00, -1.28e-17, 1.51e-17],
[1.56e-16, -1.73e-16, -1.28e-17, 1.00e+00, 1.93e-16],
[2.63e-16, -8.87e-17, 1.51e-17, 1.93e-16, 1.00e+00]11]))
UhatUhatT = Uhat@Uhat.T
UhatTUhat = Uhat.T@Uhat
print ('UhatUhatT, UhatTUhat= ')
UhatUhatT, UhatTUhat
UhatUhatT, UhatTUhat=
(array([[0.04, 0.17, 0.09, -0. , 0.06],
[0.127, 0.71, 0.36, -0.16, 0.14],
[0.09, 0.36, 0.2, 0.02, 0.14],
[-0. , -0.16, 0.02, 0.71, 0.42],
[0.06, 0.14, 0.14, 0.42, 0.3411),
array ([[1.00e+00, 2.42e-17],
[2.42e-17, 1.00e+00]11))
Remarks:

The cells above illustrate the application of the full matrices=True and full_matrices=False options.
Using full _matrices=False returns a reduced singular value decomposition.

The full and reduced SVD’s both accurately decompose an m x n matrix X

When we study Dynamic Mode Decompositions below, it will be important for us to remember the preceding properties
of full and reduced SVD’s in such tall-skinny cases.

Now let’s turn to a short-fat case.

To illustrate this case, we'll set m = 2 < 5 = n and compute both full and reduced SVD’s.

import numpy as np

X = np.random.rand(2,5)

U, S, V = np.linalg.svd (X, full_matrices=True) # full SVD
Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print ('U, S, V. =")

U, 8, V

u, S, V=

(array ([[0.61, -0.79]

[0.79, 0.61]
array ([1.79, 0.86]),
array ([[0.52, 0.45,

o~

)y

.39, 0.38, 0.48]7,
@y =0:46, 0,311,
089, =0,02, =0,18],
06, 0.8 ;, 0. I

[
=048, =039,
[
[.16, 0.06, 0.6911))

O O O O O

0,04, =0.7 ;, =

5.6. Full and Reduced SVD’s 77

Intermediate Quantitative Economics with Python

print ('Uhat, Shat, Vhat = ')
Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array ([[0.61, -0.791,
[0.79, 0.6111),

array ([1.79, 0.86]),

array ([[0.52, 0.45, 0.39, 0.38, 0.48],
[-0.59, 0.39, ©0.16, -0.46, 0.5111))

Let’s verify that our reduced SVD accurately represents X

SShat=np.diag(Shat)
np.allclose (X, Uhat@SShat@Vhat)

True

5.7 Polar Decomposition

A reduced singular value decomposition (SVD) of X is related to a polar decomposition of X

X =5Q
where
S=UxU"
Q=U0vV"T
Here

e Sisanm x m symmetric matrix

e @ is an m x n orthogonal matrix
and in our reduced SVD

e U isanm x p orthonormal matrix

e Yisap X p diagonal matrix

e Visann x p orthonormal

5.8 Application: Principal Components Analysis (PCA)

Let’s begin with a case in which n >> m, so that we have many more individuals n than attributes m.

The matrix X is short and fat in an n >> m case as opposed to a tall and skinny case with m >> n to be discussed
later.

We regard X as an m x n matrix of data:

X:[X1|X2|"'|Xn]

78 Chapter 5. Singular Value Decomposition (SVD)

Intermediate Quantitative Economics with Python

Ty, X
. Lo j . . . X 2

where for j =1, ..., n the column vector X ; = “J | is a vector of observations on variables | .
T mj X m

In a time series setting, we would think of columns j as indexing different times at which random variables are observed,
while rows index different random variables.

In a cross-section setting, we would think of columns j as indexing different individuals for which random variables are
observed, while rows index different attributes.

As we have seen before, the SVD is a way to decompose a matrix into useful components, just like polar decomposition,
eigendecomposition, and many others.

PCA, on the other hand, is a method that builds on the SVD to analyze data. The goal is to apply certain steps, to help
better visualize patterns in data, using statistical tools to capture the most important patterns in data.

Step 1: Standardize the data:
Because our data matrix may hold variables of different units and scales, we first need to standardize the data.

First by computing the average of each row of X.

_ 13
X, =— T;;
n <~
We then create an average matrix out of these means:
X
X=X e
X,

m

And subtract out of the original matrix to create a mean centered matrix:
B=X-X

Step 2: Compute the covariance matrix:

Then because we want to extract the relationships between variables rather than just their magnitude, in other words, we
want to know how they can explain each other, we compute the covariance matrix of B.

C= lBBT
n

Step 3: Decompose the covariance matrix and arrange the singular values:

Since the matrix C' is positive definite, we can eigendecompose it, find its eigenvalues, and rearrange the eigenvalue and
eigenvector matrices in a decreasing order.

The eigendecomposition of C' can be found by decomposing B instead. Since B is not a square matrix, we obtain an
SVD of B:

BBT =UxvV(UZVT)T
=UxvVTveTuT
=Usx’UT

1 TrrT
C=-UXx2'U
n

We can then rearrange the columns in the matrices U and ¥ so that the singular values are in decreasing order.

5.8. Application: Principal Components Analysis (PCA) 79

Intermediate Quantitative Economics with Python

Step 4: Select singular values, (optional) truncate the rest:

We can now decide how many singular values to pick, based on how much variance you want to retain. (e.g., retaining
95% of the total variance).

We can obtain the percentage by calculating the variance contained in the leading r factors divided by the variance in
total:

Step 5: Create the Score Matrix:

=UX

5.9 Relationship of PCA to SVD

To relate an SVD to a PCA of data set X, first construct the SVD of the data matrix X:

Let’s assume that sample means of all variables are zero, so we don’t need to standardize our matrix.
X =UsV" =0 UV} + 0,0,V + - +0,U,V,, (5.9)
where
U= [U,|Uy]...|U,]

v’
VT — Vv2T
el

In equation (5.9), each of the m x n matrices U; VjT is evidently of rank 1.

Thus, we have

Uiy V1T U 12V2T Ulp VpT
T T

X L N L O N LA (5.10)
Uml ‘/1T Um2 VZT Ump ‘/pT

Here is how we would interpret the objects in the matrix equation (5.10) in a time series context:

o foreach k =1, ..., n, the object {ij J—1 is a time series for the kth principal component

k =1,...,m1is a vector of loadings of variables X, on the kth principal component, ¢ = 1,...,m

o 0, foreach k = 1, ..., p is the strength of kth principal component, where strength means contribution to the
overall covariance of X.

80 Chapter 5. Singular Value Decomposition (SVD)

Intermediate Quantitative Economics with Python

5.10 PCA with Eigenvalues and Eigenvectors

We now use an eigen decomposition of a sample covariance matrix to do PCA.
Let X,,,, be our m x n data matrix.

Let’s assume that sample means of all variables are zero.

We can assure this by pre-processing the data by subtracting sample means.

Define a sample covariance matrix {2 as
Q=XXT

Then use an eigen decomposition to represent €2 as follows:

Q= PAPT
Here
o Pism x m matrix of eigenvectors of €2
« A is a diagonal matrix of eigenvalues of (2
We can then represent X as
X = Pe
where
e=P1'X
and
e’ = A.
We can verify that
XXT = PAPT. (5.11)
It follows that we can represent the data matrix X as
€1
X = [X,Xo] | X,] = [PiIPs] o [Po] | 2| = Prey + Pyey + oo + Pe,
6’m

To reconcile the preceding representation with the PCA that we had obtained earlier through the SVD, we first note that

2y — 2
ej—)\j_a].

~ € . . . ~ NT _
Now define ¢ = \/;\7, which implies that €j€; = 1.

Therefore

X = \/Xplgl + \/gp2€2 +o+ V)‘mpme:n

=0,P &+ 0,Pyé5 + ... + 0, P €,
which agrees with
X =0 UV, + 0,0V, + . 40,0V,

provided that we set

5.10. PCA with Eigenvalues and Eigenvectors 81

Intermediate Quantitative Economics with Python

« U; = P; (a vector of loadings of variables on principal component ;)

. VkT = €, (the kth principal component)

Because there are alternative algorithms for computing P and U for given a data matrix X, depending on algorithms
used, we might have sign differences or different orders of eigenvectors.

We can resolve such ambiguities about U and P by
1. sorting eigenvalues and singular values in descending order

2. imposing positive diagonals on P and U and adjusting signs in V' T accordingly

5.11 Connections

To pull things together, it is useful to assemble and compare some formulas presented above.

First, consider an SVD of an m X n matrix:
X=UxVT
Compute:

XXT=U0zvVveTuT
=USyTUT (5.12)
=UAUT

Compare representation (5.12) with equation (5.11) above.
Evidently, U in the SVD is the matrix P of eigenvectors of XX " and XX is the matrix A of eigenvalues.

Second, let’s compute

X'X=vy'uluzv’
=Vvyisv’

Thus, the matrix V in the SVD is the matrix of eigenvectors of X X

Summarizing and fitting things together, we have the eigen decomposition of the sample covariance matrix
XXT = PAPT

where P is an orthogonal matrix.

Further, from the SVD of X, we know that
XXT=UuxxTUuT

where U is an orthogonal matrix.

Thus, P = U and we have the representation of X
X=Pe=UXVT
It follows that

UTX=XVT=¢

82 Chapter 5. Singular Value Decomposition (SVD)

Intermediate Quantitative Economics with Python

Note that the preceding implies that
el =TVTVRT =0T = A,
so that everything fits together.
Below we define a class DecomAnalysis that wraps PCA and SVD for a given a data matrix X.

class DecomBAnalysis:
mrirn
A class for conducting PCA and SVD.
X: data matrix

r_component: chosen rank for best approximation
mrirn

def _ _init__ (self, X, r_component=None) :

self.X X
self.Q = (X @ X.T)

self.m, self.n = X.shape
self.r = LA.matrix_rank (X)

if r_component:
self.r_component = r_component
else:
self.r_component = self.m
def pca(self):
A, P = LA.eigh(self.Q) # columns of P are eigenvectors
ind = sorted(range(A.size), key=lambda x: A[x], reverse=True)
sort by eigenvalues
self.A = Alind]
P = P[:, ind]
self.P = P @ diag_sign(P)
self.N = np.diag(self.A)

self.explained_ratio_pca = np.cumsum(self.A) / self.A.sum()

compute the N by T matrix of principal components
self.e = self.P.T @ self.X

P = self.P[:, :self.r_component]
€ = self.e[:self.r_component, :]

transform data
self.X_pca = P @ ¢

def svd(self):
U, o, VI = LA.svd(self.X)

ind = sorted(range(o.size), key=lambda x: o[x], reverse=True)

(continues on next page)

5.11. Connections

83

Intermediate Quantitative Economics with Python

sort by eigenvalues

d = min(self.m, self.n)

self.o = ol[ind]

U = U[:, ind]

D = diag_sign (U)

self.U =U @ D

VT[:d, :]1] =D @ VT[ind, :]

self.VT = VT

self.¥ = np.zeros((self.m, self.n))
self.Z[:d, :d] = np.diag(self.o)
o_sq = self.o ** 2

self.explained_ratio_svd =

np.cumsum(o_sq)

(continued from previous page)

/ o_sqg.sum/()

slicing matrices by the number of components to use

U = self.U[:, :self.r_component]
L = self.Z[:self.r_component,
VT = self.VT[:self.r_component, :]

transform data
self.X_svd = U @ & @ VT

def fit(self, r_component):
pca
P = self.P[:, :r_component]
€ = self.e[:r_component, :]

transform data

:self.r_component]

self.X_pca = P @ ¢

svd

U = self.U[:, :r_component]

Y = self.¥[:r_component, :r_component]

VT = self.VT[:r_component, :]

transform data
self.X_ svd = U @ & @ VT

def diag_sign (A):

"Compute the signs of the diagonal of matrix A"

D = np.diag(np.sign(np.diag(A)))

return D

We also define a function that prints out information so that we can compare decompositions obtained by different algo-

rithms.

def compare_pca_svd(da) :
mirrmn

Compare the outcomes of PCA and SVD.

mmn

da.pca/()

(continues on next page)

84

Chapter 5. Singular Value Decomposition (SVD)

Intermediate Quantitative Economics with Python

da.svd()

(continued from previous page)

print ('Eigenvalues and Singular values\n')

print (f'A = {da.A}\n'")
print (f'c”2 = {da.oc**2}\n"')
print ('\n"')

loading matrices

fig, axs = plt.subplots(l, 2, figsize=(14, 5))

plt.suptitle('loadings"')
axs[0] .plot(da.P.T)

0] .set_title('P")

0] .set_xlabel('m")
1] .plot(da.U.T)
axs[1l].set_title('U")
axs[1l].set_xlabel('m")
plt.show ()

axs
axs
axs

[
[
[
[
[
[

principal components

fig, axs = plt.subplots(l, 2, figsize=(14, 5))

plt.suptitle('principal components')

axs[0] .plot(da.e.T)

axs[0] .set_title('e")

axs[0] .set_xlabel('n'")

axs[l].plot(da.VT[:da.r, :].T * np.sgrt(da.A))

axs[1].set_title(r'sVv~\top *\sqgrt{\lambda}$"')
[

axs[1l].set_xlabel('n'")
plt.show ()

5.12 Exercises

© Exercise 5.12.1

very close to zero).

SO wWe can compute B with it.

In Ordinary Least Squares (OLS), we learn to compute B = (XTX) 1 X Ty, but there are cases such as when we
have colinearity or an underdetermined system: short fat matrix.

In these cases, the (X T X)) matrix is not not invertible (its determinant is zero) or ill-conditioned (its determinant is

What we can do instead is to create what is called a pseudoinverse, a full rank approximation of the inverted matrix

Thinking in terms of the Eckart-Young theorem, build the pseudoinverse matrix X+ and use it to compute B

© Solution

We can use SVD to compute the pseudoinverse:

X=UxVT

5.12. Exercises

85

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

Intermediate Quantitative Economics with Python

inverting X, we have:

Xt=vxtyuT
where:
- 0 0 0
o L 0 0
Xt = 3 I
0 L0
P
0 0 0 0
and finally:

B=Xty=VEtUTy

For an example PCA applied to analyzing the structure of intelligence tests see this lecture Multivariable Normal Distri-
bution.

Look at parts of that lecture that describe and illustrate the classic factor analysis model.

As mentioned earlier, in a sequel to this lecture about Dynamic Mode Decompositions, we'll describe how SVD’s provide
ways rapidly to compute reduced-order approximations to first-order Vector Autoregressions (VARS).

86 Chapter 5. Singular Value Decomposition (SVD)

CHAPTER
SIX

VARS AND DMDS

This lecture applies computational methods that we learned about in this lecture Singular Value Decomposition to
« first-order vector autoregressions (VARS)
o dynamic mode decompositions (DMDs)

« connections between DMDs and first-order VARs

6.1 First-Order Vector Autoregressions

We want to fit a first-order vector autoregression
X1 =AX, +Ceyq, €1 L X, 6.1)
where ¢, ; is the time ¢ + 1 component of a sequence of i.i.d. m x 1 random vectors with mean vector zero and identity

covariance matrix and where the m x 1 vector X, is

T

Xt:[Xl,t Xop - Xm,f,] (6.2)

and where - again denotes complex transposition and X ;¢ 18 variable 7 at time .
We want to fit equation (6.1).

Our data are organized in an m x (n + 1) matrix X
X =[Xy [Xy [+ [X | Xy

where fort = 1,...,n + 1, the m x 1 vector X, is given by (6.2).

Thus, we want to estimate a system (6.1) that consists of m least squares regressions of everything on one lagged value
of everything.

The i’th equation of (6.1) is a regression of X, , ., on the vector X,.
We proceed as follows.

From X , we form two m X n matrices
X=[X | X5 |]X,]
and
X' = [X2 | X || Xn+1}

Here ’ is part of the name of the matrix X’ and does not indicate matrix transposition.

87

Intermediate Quantitative Economics with Python

We use - to denote matrix transposition or its extension to complex matrices.

In forming X and X’, we have in each case dropped a column from X , the last column in the case of X, and the first
column in the case of X”.

Evidently, X and X’ are both m x n matrices.

We denote the rank of X as p < min(m,n).

Two cases that interest us are
e n >> m, so that we have many more time series observations n than variables m
e m >> n, so that we have many more variables m than time series observations n

At a general level that includes both of these special cases, a common formula describes the least squares estimator Aof
A.

But important details differ.

The common formula is
A=X'X* (6.3)

where X is the pseudo-inverse of X.

To read about the Moore-Penrose pseudo-inverse please see Moore-Penrose pseudo-inverse
Applicable formulas for the pseudo-inverse differ for our two cases.

Short-Fat Case:

When n >> m, so that we have many more time series observations 7 than variables m and when X has linearly
independent rows, X X | has an inverse and the pseudo-inverse X is

Xt = XT<XXT)—1

Here X is a right-inverse that verifies XX+ =1 _ .

In this case, our formula (6.3) for the least-squares estimator of the population matrix of regression coefficients A becomes
A=X'XT(XXT)! (6.4)

This formula for least-squares regression coefficients is widely used in econometrics.
It is used to estimate vector autorgressions.

The right side of formula (6.4) is proportional to the empirical cross second moment matrix of X, ,; and X, times the
inverse of the second moment matrix of X,.

Tall-Skinny Case:

When m >> n, so that we have many more attributes m than time series observations 7 and when X has linearly
independent columns, X " X has an inverse and the pseudo-inverse X+ is

Xt =(X"X)xT

Here X is a left-inverse that verifies X*X =1 .

In this case, our formula (6.3) for a least-squares estimator of A becomes
A=X/(XTX)'xT (6.5)

Please compare formulas (6.4) and (6.5) for A.

88 Chapter 6. VARs and DMDs

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

Intermediate Quantitative Economics with Python

Here we are especially interested in formula (6.5).

The ith row of A is an m X 1 vector of regression coefficients of X; ; ; on X;;,j=1,...,m.

If we use formula (6.5) to calculate AX we find that
AX =X’
so that the regression equation fits perfectly.

This is a typical outcome in an underdetermined least-squares model.

To reiterate, in the tall-skinny case (described in Singular Value Decomposition) in which we have a number n of obser-
vations that is small relative to the number m of attributes that appear in the vector X,, we want to fit equation (6.1).

We confront the facts that the least squares estimator is underdetermined and that the regression equation fits perfectly.
To proceed, we'll want efficiently to calculate the pseudo-inverse X .
The pseudo-inverse X+ will be a component of our estimator of A.

As our estimator A of A we want to form an 1 x m matrix that solves the least-squares best-fit problem
A = argmin ;|| X" — AX|| ¢ (6.6)

where || - || » denotes the Frobenius (or Euclidean) norm of a matrix.

1A = [DD 1A,
i=1 j=1

The minimizer of the right side of equation (6.6) is

The Frobenius norm is defined as

A=Xx'X* (6.7)
where the (possibly huge) n x m matrix X* = (X" X)X is again a pseudo-inverse of X.

For some situations that we are interested in, X ' X can be close to singular, a situation that makes some numerical
algorithms be inaccurate.

To acknowledge that possibility, we’ll use efficient algorithms to constructing a reduced-rank approximation of Ain
formula (6.5).

Such an approximation to our vector autoregression will no longer fit perfectly.

The ith row of A is an m x 1 vector of regression coefficients of X; , ., on X

g = 1,....m.

An efficient way to compute the pseudo-inverse X is to start with a singular value decomposition
X=UxvVT (6.8)
where we remind ourselves that for a reduced SVD, X is an m x n matrix of data, U is an m X p matrix, X isap X p
matrix, and V' is an n X p matrix.
We can efficiently construct the pertinent pseudo-inverse Xt by recognizing the following string of equalities.
Xt =(XTX)'xT

= (vxu'uzvhH-lvsuT’

= (Vv hH-lvxuT’ (6.9)

=V iy lvivyu’

=V U’

6.1. First-Order Vector Autoregressions 89

Intermediate Quantitative Economics with Python

(Since we are in the m >> n case in which V'V = [pxp inareduced SVD, we can use the preceding string of equalities
for a reduced SVD as well as for a full SVD.)

Thus, we shall construct a pseudo-inverse X+ of X by using a singular value decomposition of X in equation (6.8) to
compute

Xt=vy U’ (6.10)
where the matrix X! is constructed by replacing each non-zero element of ¥ with a;l.

We can use formula (6.10) together with formula (6.7) to compute the matrix Aof regression coefficients.

Thus, our estimator A = X’ X of the m x m matrix of coefficients A is

A=XxVelyT 6.11)

6.2 Dynamic Mode Decomposition (DMD)

We turn to the m >> n tall and skinny case associated with Dynamic Mode Decomposition.

Here an m x n + 1 data matrix X contains many more attributes (or variables) m than time periods n + 1.
Dynamic mode decomposition was introduced by [Schmid, 2010],

You can read about Dynamic Mode Decomposition [Kutz ef al., 2016] and [Brunton and Kutz, 2019] (section 7.2).

Dynamic Mode Decomposition (DMD) computes a rank r < p approximation to the least squares regression coefficients
A described by formula (6.11).

We'll build up gradually to a formulation that is useful in applications.

We'll do this by describing three alternative representations of our first-order linear dynamic system, i.e., our vector
autoregression.

Guide to three representations: In practice, we’ll mainly be interested in Representation 3.

We use the first two representations to present some useful intermediate steps that help us to appreciate what is under the
hood of Representation 3.

In applications, we'll use only a small subset of DMD modes to approximate dynamics.
We use such a small subset of DMD modes to construct a reduced-rank approximation to A.

To do that, we'll want to use the reduced SVD?s affiliated with representation 3, not the full SVD’s affiliated with repre-
sentations 1 and 2.

Guide to impatient reader: In our applications, we’ll be using Representation 3.

You might want to skip the stage-setting representations 1 and 2 on first reading.

6.3 Representation 1

In this representation, we shall use a full SVD of X.

We use the m columns of U, and thus the m rows of U, to define a m x 1 vector 7% as

b, =U"X,. (6.12)

90 Chapter 6. VARs and DMDs

Intermediate Quantitative Economics with Python

The original data X, can be represented as
X, = Ub, (6.13)

(Here we use b to remind ourselves that we are creating a basis vector.)
Since we are now using a full SVD, UU T =1, ..
So it follows from equation (6.12) that we can reconstruct X, from Zt.
In particular,

» Equation (6.12) serves as an encoder that rotates the m x 1 vector X, to become an m X 1 vector 7)t

« Equation (6.13) serves as a decoder that reconstructs the m x 1 vector X, by rotating the m x 1 vector 7%

Define a transition matrix for an m x 1 basis vector Bt by

A=UTAU (6.14)
We can recover A from

A=UAUT
Dynamics of the m x 1 basis vector 7)t are governed by

gt+1 = I‘Et

To construct forecasts X, of future values of X, conditional on X, we can apply decoders (i.e., rotators) to both sides
of this equation and deduce

X, =UAUTX,

where we use X,,,t > 1 to denote a forecast.

6.4 Representation 2

This representation is related to one originally proposed by [Schmid, 2010].
It can be regarded as an intermediate step on the way to obtaining a related representation 3 to be presented later
As with Representation 1, we continue to
« use a full SVD and not a reduced SVD
As we observed and illustrated in a lecture about the Singular Value Decomposition
« @forafull SVDUU' =1,,,,, and U'U = I, are both identity matrices
« (b) for a reduced SVD of X, U U is not an identity matrix.

As we shall see later, a full SVD is too confining for what we ultimately want to do, namely, cope with situations in which
U TU is not an identity matrix because we use a reduced SVD of X.

But for now, let’s proceed under the assumption that we are using a full SVD so that requirements (a) and (b) are both
satisfied.

Form an eigendecomposition of the m x m matrix A =UT AU defined in equation (6.14):

A=WAW-! (6.15)

6.4. Representation 2 91

Intermediate Quantitative Economics with Python

where A is a diagonal matrix of eigenvalues and W is an m X m matrix whose columns are eigenvectors corresponding
to rows (eigenvalues) in A.

When UUT =1

mxXm?

as is true with a full SVD of X, it follows that
A=UAUT =UWAW-UT (6.16)

According to equation (6.16), the diagonal matrix A contains eigenvalues of Aand corresponding eigenvectors of A are
columns of the matrix UW.

It follows that the systematic (i.e., not random) parts of the X, dynamics captured by our first-order vector autoregressions
are described by

X, = UWAW'UTX,
Multiplying both sides of the above equation by W—1U " gives
WUTX,,, = AW UTX,

or
Bt-&-l = ABt
where our encoder is
b, =W IUTX,
and our decoder is
X, =UWb,

We can use this representation to construct a predictor X, ; of X, 41 conditional on X via:
X, =UWAWIUTX, (6.17)

In effect, [Schmid, 2010] defined an m X m matrix ® as

o, =UW (6.18)
and a generalized inverse
o =w-tUu’ (6.19)
[Schmid, 2010] then represented equation (6.17) as
X, = ADFX, (6.20)

Components of the basis vector Bt =W IUTX, = 0! X, are
DMD projected modes.

To understand why they are called projected modes, notice that
OF = (0 D,)7 D]
so that the m x p matrix
b= X
is a matrix of regression coefficients of the m X n matrix X on the m X p matrix ®_.

We'll say more about this interpretation in a related context when we discuss representation 3, which was suggested by
Tuetal [Tueral, 2014].

It is more appropriate to use representation 3 when, as is often the case in practice, we want to use a reduced SVD.

92 Chapter 6. VARs and DMDs

Intermediate Quantitative Economics with Python

6.5 Representation 3

Departing from the procedures used to construct Representations 1 and 2, each of which deployed a full SVD, we now
use a reduced SVD.

Again, we let p < min(m, n) be the rank of X.
Construct a reduced SVD

X=U8VT,
where now U is m x p, Sisp x p,and V' is p x n.
Our minimum-norm least-squares approximator of A now has representation
A=XVE0T (6.21)

Computing Dominant Eigenvectors of A
We begin by paralleling a step used to construct Representation 1, define a transition matrix for a rotated p x 1 state zt
by

A=0UTAO (6.22)
Interpretation as projection coefficients
[Brunton and Kutz, 2022] remark that A can be interpreted in terms of a projection of A onto the p modes in .

To verify this, first note that, because O0=1 , it follows that
A=UTAU =0 X'VE0TU =0T X' VE0T (6.23)

Next, we'll just compute the regression coefficients in a projection of AonU using a standard least-squares formula

~

OO T A= (0T0) " 0TXVEWT =0TX'VEWT = A

Thus, we have verified that Aisa least-squares projection of Aonto U.
An Inverse Challenge
Because we are using a reduced SVD, ooT + 1.

Consequently,
A+UATT,
so we can’t simply recover A from A and U.

A Blind Alley

We can start by hoping for the best and proceeding to construct an eigendecomposition of the p X p matrix A:
A=WAW-! (6.24)

where A is a diagonal matrix of p eigenvalues and the columns of W are corresponding eigenvectors.

Mimicking our procedure in Representation 2, we cross our fingers and compute an m X p matrix

~ ~

d, =0W (6.25)

6.5. Representation 3 93

Intermediate Quantitative Economics with Python

that corresponds to (6.18) for a full SVD.
At this point, where Ais given by formula (6.21) it is interesting to compute /i&’s:
Ad, = (X'VETT(OW)
= X'VEW
+ (UW)A
=d.A

That A&)S + ‘55/\ means that, unlike the corresponding situation in Representation 2, columns of <f>S = UW are not
eigenvectors of A corresponding to eigenvalues on the diagonal of matix A.

An Approach That Works
Continuing our quest for eigenvectors of A that we can compute with a reduced SVD, let’s define an m x p matrix ® as
d=Ad, = X'VEIW (6.26)

It turns out that columns of ® are eigenvectors of A.
This is a consequence of a result established by Tu et al. [Tu ef al., 2014] that we now present.

Proposition The p columns of ® are eigenvectors of A.

Proof: From formula (6.26) we have
A = (X'VEWUT (X' VS 1W)

= X'VS 1AW

= X'VEITWA

= OA
so that

Ad = DA. (6.27)

Let ¢, be the ith column of ® and), be the corresponding ¢ eigenvalue of A from decomposition (6.24).

Equating the m x 1 vectors that appear on the two sides of equation (6.27) gives
/Iéf’i = Ay
This equation confirms that ¢, is an eigenvector of A that corresponds to eigenvalue A; of both Aand A.

This concludes the proof.

Also see [Brunton and Kutz, 2022] (p. 238)

6.5.1 Decoder of b as a linear projection

From eigendecomposition (6.27) we can represent Aas
A=DADT, (6.28)
From formula (6.28) we can deduce dynamics of the p x 1 vector Et:

z7t+1 = Azt

94 Chapter 6. VARs and DMDs

Intermediate Quantitative Economics with Python

where
b, = d*X, (6.29)
Since the m x p matrix ® has p linearly independent columns, the generalized inverse of & is
ot = (¢TP)LpT
and so
b= (®T®) DT X (6.30)

The p X n matrix bis recognizable as a matrix of least squares regression coefficients of the m x n matrix X on the
m X p matrix ¢ and consequently

X =®b 6.31)

is an m X n matrix of least squares projections of X on ®.
Variance Decomposition of X

By virtue of the least-squares projection theory discussed in this quantecon lecture https://python-advanced.quantecon.
org/orth_proj.html, we can represent X as the sum of the projection X of X on @ plus a matrix of errors.

To verify this, note that the least squares projection X is related to X by

X=X+e¢
or

X =0b+e (6.32)
where € is an m x n matrix of least squares errors satisfying the least squares orthogonality conditions €' ® = 0 or

(X —®b) @ =0 (6.33)

mxp

Rearranging the orthogonality conditions (6.33) gives X ' ® = b® " ®, which implies formula (6.30).

6.5.2 An Approximation

We now describe a way to approximate the p x 1 vector Bt instead of using formula (6.29).

In particular, the following argument adapted from [Brunton and Kutz, 2022] (page 240) provides a computationally
efficient way to approximate b,.

For convenience, we’ll apply the method at time ¢t = 1.

For ¢t = 1, from equation (6.32) we have
)Z’l — qﬁ)l (6.34)

where 51 isap x 1 vector.

Recall from representation 1 above that X; = U 7)1, where ?)1 is a time 1 basis vector for representation 1 and U is from
the full SVD X = UV .

It then follows from equation (6.32) that

Uzl = X/Vi_lﬁ/él + 61

6.5. Representation 3 95

https://python-advanced.quantecon.org/orth_proj.html
https://python-advanced.quantecon.org/orth_proj.html

Intermediate Quantitative Economics with Python

where ¢, is a least-squares error vector from equation (6.32).

It follows that
b, =UTX'VEWb, +UTe,
Replacing the error term U "¢, by zero, and replacing U from a full SVD of X with U from a reduced SVD, we obtain
an approximation b, to by:
b1 UTX'VE 1Wb1

Recall that from equation (6.23), A=0TxVE
It then follows that

b, = AWb,
and therefore, by the eigendecomposition (6.24) of A, we have

= WAD,

Consequently,
by = (WA)~'b,

or

b, = (WA 10T X, (6.35)

which is a computationally efficient approximation to the following instance of equation (6.29) for the initial vector 51:
b =otX, (6.36)

(To highlight that (6.35) is an approx1mat10n users of DMD sometimes call components of basis vector b = d* X, the

exact DMD modes and components of b, = (WA)~10T X, the approximate modes.)

Conditional on X, we can compute a decoded Xt +j»J = 1,2, ... from the exact modes via

X

1y = GAIDTX, (6.37)

or use compute a decoded X, ; from approximate modes via

X, ;= 0N (WA)TTX,. (6.38)

to forecast X

We can then use a decoded Xt+7 or Xt 4

+J

6.5.3 Using Fewer Modes

In applications, we'll actually use only a few modes, often three or less.
Some of the preceding formulas assume that we have retained all p modes associated with singular values of X.
We can adjust our formulas to describe a situation in which we instead retain only the r < p largest singular values.

In that case, we simply replace 3 with the appropriate r X r matrix of singular values, {7 with the m x r matrix whose
columns correspond to the 7 largest singular values, and V' with the n X r matrix whose columns correspond to the r
largest singular values.

Counterparts of all of the salient formulas above then apply.

96 Chapter 6. VARs and DMDs

Intermediate Quantitative Economics with Python

6.6 Source for Some Python Code

You can find a Python implementation of DMD here:

https://mathlab.sissa.it/pydmd

6.6. Source for Some Python Code

97

https://mathlab.sissa.it/pydmd

Intermediate Quantitative Economics with Python

98

Chapter 6. VARs and DMDs

CHAPTER
SEVEN

USING NEWTON’S METHOD TO SOLVE ECONOMIC MODELS

Contents
o Using Newton’s Method to Solve Economic Models
— Overview

— Fixed point computation using Newton's method

Root-Finding in one dimension

Multivariate Newton's method

Exercises

7.1 Overview

Many economic problems involve finding fixed points or zeros (also called “roots”) of functions.

For example, in a simple supply and demand model, an equilibrium price is one that makes excess demand zero.
In other words, an equilibrium is a zero of the excess demand function.

There are various computational techniques for solving for fixed points and zeros.

In this lecture we study an important gradient-based technique called Newton’s method.

Newton’s method does not always work but, in situations where it does, convergence is often fast when compared to other
methods.

The lecture will apply Newton’s method in one-dimensional and multidimensional settings to solve fixed-point and zero-
finding problems.

¢ When finding the fixed point of a function f, Newton’s method updates an existing guess of the fixed point by
solving for the fixed point of a linear approximation to the function f.

« When finding the zero of a function f, Newton’s method updates an existing guess by solving for the zero of a
linear approximation to the function f.

To build intuition, we first consider an easy, one-dimensional fixed point problem where we know the solution and solve
it using both successive approximation and Newton’s method.

Then we apply Newton’s method to multidimensional settings to solve for market equilibria with multiple goods.

99

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)
https://en.wikipedia.org/wiki/Zero_of_a_function
https://en.wikipedia.org/wiki/Newton%27s_method

Intermediate Quantitative Economics with Python

At the end of the lecture, we leverage the power of automatic differentiation in jax to solve a very high-dimensional
equilibrium problem.

We use the following imports in this lecture

import matplotlib.pyplot as plt
from typing import NamedTuple
from scipy.optimize import root
import jax.numpy as jnp

import jax

Enable 64-bit precision
jax.config.update ("jax_enable_x64", True)

7.2 Fixed point computation using Newton’s method

In this section we solve the fixed point of the law of motion for capital in the setting of the Solow growth model.

We will inspect the fixed point visually, solve it by successive approximation, and then apply Newton’s method to achieve
faster convergence.

7.2.1 The Solow model

In the Solow growth model, assuming Cobb-Douglas production technology and zero population growth, the law of motion
for capital is

kiy =g(k,) where g(k):=sAk*+(1—-0)k 7.1)

Here
o k, is capital stock per worker,
e A, > 0 are production parameters with o < 1
e s > (is a savings rate, and
« § € (0,1) is a rate of depreciation
In this example, we wish to calculate the unique strictly positive fixed point of g, the law of motion for capital.
In other words, we seek a k* > 0 such that g(k*) = k*.
« Such a k™ is called a steady state, since k, = k* implies k,, | = k™.
Using pencil and paper to solve g(k) = k, you will be able to confirm that

k* _ (%) 1/<1_O‘)
o

100 Chapter 7. Using Newton’s Method to Solve Economic Models

https://docs.jax.dev/en/latest/_autosummary/jax.grad.html
https://en.wikipedia.org/wiki/Solow%E2%80%93Swan_model
https://en.wikipedia.org/wiki/Steady_state

Intermediate Quantitative Economics with Python

7.2.2 Implementation

Let’s store our parameters in NamedTup le to help us keep our code clean and concise.

class SolowParameters (NamedTuple) :

A: float
s: float
a: float
5: float

This function creates a suitable SolowParameters with default parameter values.

def create_solow_params (A=2.0, s=0.3, a=0.3, &=0.4):
"""Creates a Solow model parameterization with default values."""
return SolowParameters (A=A, s=s, a=a, 0=08)

The next two functions implement the law of motion (7.2.7) and store the true fixed point k*.

def g(k, params):
A, s, a, 8 = params
return A * s * k**a + (1 - &) * k

def exact_fixed_point (params) :
A, s, a, 8 = params
return ((s * A) / 8) ** (1 / (1 - a))

Here is a function to provide a 45 degree plot of the dynamics.

def plot_45(params, ax, fontsize=14):

k_min, k_max = 0.0, 3.0
k_grid = jnp.linspace(k_min, k_max, 1200)

Plot the functions

1b = r"Sg(k) = sAk~{\alpha} + (1 - \delta)ks"

ax.plot (k_grid, g(k_grid, params), lw=2, alpha=0.6, label=1Db)
ax.plot (k_grid, k_grid, "k--", 1lw=1, alpha=0.7, label="45")

Show and annotate the fixed point
kstar = exact_fixed_point (params)
fps = (kstar,)
ax.plot (fps, fps, "go", ms=10, alpha=0.6)
ax.annotate (
r"$k~* = (sA / \delta)*{\frac {1-\alpha}}s",
xy=(kstar, kstar),
xycoords="data",
xytext=(20, -20),
textcoords="offset points",
fontsize=fontsize,

ax.legend (loc="upper left", frameon=False, fontsize=fontsize)

ax.set_yticks ((0, 1, 2, 3))
ax.set_yticklabels((0.0, 1.0, 2.0, 3.0), fontsize=fontsize)
ax.set_ylim (0, 3)

(continues on next page)

7.2. Fixed point computation using Newton’s method 101

https://typing.python.org/en/latest/spec/namedtuples.html

Intermediate Quantitative Economics with Python

(continued from previous page)

ax.set_xlabel ("Sk_tS$", fontsize=fontsize)
ax.set_ylabel ("Sk_{t+1}$", fontsize=fontsize)

Let’s look at the 45 degree diagram for two parameterizations.

params = create_solow_params ()

fig, ax = plt.subplots(figsize=(8, 8))
plot_45 (params, ax)

plt.show ()

W1124 04:34:13.6954306 30643 cuda_executor.cc:1802] GPU interconnect information.
wnot available: INTERNAL: NVML doesn't support extracting fabric info or NVLink.
~1s not used by the device.

W1124 04:34:13.699112 30605 cuda_executor.cc:1802] GPU interconnect information.
wnot available: INTERNAL: NVML doesn't support extracting fabric info or NVLink.
~1s not used by the device.

3.0 ,,
glk) =sAk* + (1 — O8)k
------ 45
2.0 T ”z/
fia * 1
7 k' = (sAI6)=
— ,f’
+
B -
-M /f”
1.0 1
D.D l‘ T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
K¢

102 Chapter 7. Using Newton’s Method to Solve Economic Models

Intermediate Quantitative Economics with Python

params = create_solow_params (a=0.05, &=0.5)
fig, ax = plt.subplots(figsize=(8, 8))
plot_45 (params, ax)

plt.show ()
3.0 -
glk) =sAk* + (1 — 0)k
------ 45
2.0 T ‘,//
— ,"’
+
R ’
= //
i * 1
7 kY =(sA/B)T
1.0 A
D.D I" T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
ke

We see that k* is indeed the unique positive fixed point.

7.2. Fixed point computation using Newton’s method 103

Intermediate Quantitative Economics with Python

Successive approximation

First let’s compute the fixed point using successive approximation.

In this case, successive approximation means repeatedly updating capital from some initial state k, using the law of
motion.

Here’s a time series from a particular choice of k.

def compute_iterates(k_0, £, params, n=25):
"""Compute time series of length n generated by function f."""
k = k_0
k_iterates = []
for t in range(n):
k_iterates.append (k)
k = f(k, params)
return k_iterates

params = create_solow_params ()

k_0 = 0.25

k_series = compute_iterates (k_0, g, params)
k_star = exact_fixed_point (params)

fig, ax = plt.subplots/()

ax.plot (k_series, "o")

ax.plot ([k_star] * len(k_series), "k—-")
ax.set_ylim(0, 3)

plt.show ()

3.0

2.5 7

2.0 1

———————————————————— P ET T TITTITETITEe

1.5 1 @

1.0~

0.5 A

0.0

Let’s see the output for a long time series.

104 Chapter 7. Using Newton’s Method to Solve Economic Models

Intermediate Quantitative Economics with Python

k_series = compute_iterates(k_0, g, params, n=10_000)
k_star_approx = k_series[-1]
k_star_approx

1.7846741842265788

This is close to the true value.

k_star

1.7846741842265788

Newton’s method

In general, when applying Newton’s fixed point method to some function g, we start with a guess x, of the fixed point
and then update by solving for the fixed point of a tangent line at z,.

To begin with, we recall that the first-order approximation of g at x, (i.e., the first order Taylor approximation of g at
x) is the function

g(x) ~ g(zo) + g’ (o) (x —) (1.2)
We solve for the fixed point of g by calculating the x; that solves

9(7) — g’ ()T

x =
! 1—g'(xg)

Generalising the process above, Newton’s fixed point method iterates on

g(x,) — g'(z)7,

Ty = W, x given (7.3)

To implement Newton’s method we observe that the derivative of the law of motion for capital (7.2.1) is
g (k) = asAk® ' + (1 —4) (7.4)
Let’s define this:
def Dg(k, params):

A, s, a, 8 = params
return a * A * s * k ** (a - 1) + (1 - 98)

Here’s a function q representing (7.2.3).

def g(k, params):
return (g(k, params) - Dg(k, params) * k) / (1 - Dg(k, params))

Now let’s plot some trajectories.

def plot_trajectories

params,

k0_a=0.8, # first initial condition
k0_b=3.1, # second initial condition
n=20, # length of time series
fs=14, # fontsize

(continues on next page)

7.2. Fixed point computation using Newton’s method 105

Intermediate Quantitative Economics with Python

fig, axes = plt.subplots(2, 1, figsize=(10, 6))

axl, ax2 = axes

ksl = compute_iterates(kO_a, g, params, n)

axl.plot (ksl, "-o", label="successive approximation")
ks2 = compute_iterates (kO_b, g, params, n)

ax2.plot (ks2, "-o", label="successive approximation")
ks3 = compute_iterates(kO_a, g, params, n)

axl.plot (ks3, "-o", label="newton steps")

ks4 = compute_iterates (kO_b, g, params, n)
ax2.plot (ks4, "-o", label="newton steps")

for ax in axes:
ax.plot (k_star * jnp.ones(n), "k-—-")
ax.legend(fontsize=fs, frameon=False)
ax.set_ylim(0.6, 3.2)
ax.set_yticks ((k_star,))
ax.set_yticklabels (("$k"*S$",), fontsize=fs)
ax.set_xticks(jnp.linspace (0, 19, 20))

plt.show ()

params = create_solow_params ()
plot_trajectories (params)

(continued from previous page)

—e— successive approximation
newton steps

k™1
T T T T T T T T T T T T T T T T T T T T
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
—e— successive approximation
newton steps
k*{ =-=-%= —e

We can see that Newton’s method converges faster than successive approximation.

106 Chapter 7. Using Newton’s Method to Solve Economic Models

Intermediate Quantitative Economics with Python

7.3 Root-Finding in one dimension

In the previous section we computed fixed points.
In fact Newton’s method is more commonly associated with the problem of finding zeros of functions.

Let’s discuss this “root-finding” problem and then show how it is connected to the problem of finding fixed points.

7.3.1 Newton’s method for zeros

Let’s suppose we want to find an x such that f(x) = 0 for some smooth function f mapping real numbers to real numbers.
Suppose we have a guess x, and we want to update it to a new point 2.

As a first step, we take the first-order approximation of f around x:
f(@) ~ [(o) + [(o) (¥ — o)

Now we solve for the zero of f .
In particular, we set f (z1) = 0 and solve for x; to get
o f (330)
Ty =Ty f 7 (xo) ’

Generalizing the formula above, for one-dimensional zero-finding problems, Newton’s method iterates on

f(xy)

T T)

T, given

, X given (7.5)

The following code implements the iteration (7.3.1)

def newton(f, x_0, tol=le-7, max_iter=100_000) :
x = x_0
Df = jax.grad(f)

Implement the zero-finding formula
@jax.jit
def g(x):

return x - f(x) / Df(x)

error = tol + 1
n =0
while error > tol:
n += 1
if n > max_iter:
raise Exception("Max iteration reached without convergence")

y = a(x)

error = jnp.abs(x - vy)

X =Yy

print (f"iteration {n}, error = {error:.5f}")

return x.item()

Numerous libraries implement Newton’s method in one dimension, including SciPy, so the code is just for illustrative
purposes.

(That said, when we want to apply Newton’s method using techniques such as automatic differentiation or GPU acceler-
ation, it will be helpful to know how to implement Newton’s method ourselves.)

7.3. Root-Finding in one dimension 107

Intermediate Quantitative Economics with Python

7.3.2 Application to finding fixed points

Now consider again the Solow fixed-point calculation, where we solve for k satisfying g(k) = k.
We can convert to this to a zero-finding problem by setting f(x) := g(x) — .

Any zero of f is clearly a fixed point of g.

Let’s apply this idea to the Solow problem

params = create_solow_params ()
k_star_approx_newton = newton(f = lambda x: g(x, params) - x, x_0=0.8)
iteration 1, error = 1.27209
iteration 2, error = 0.28180
iteration 3, error = 0.00561
iteration 4, error = 0.00000
iteration 5, error = 0.00000

k_star_approx_newton

1.7846741842265788

The result confirms convergence we saw in the graphs above: a very accurate result is reached with only 5 iterations.

7.4 Multivariate Newton’s method

In this section, we introduce a two-good problem, present a visualization of the problem, and solve for the equilibrium of
the two-good market using both a zero finder in SciPy and Newton’s method.

We then expand the idea to a larger market with 5,000 goods and compare the performance of the two methods again.

We will see a significant performance gain when using Newton’s method.

7.4.1 A two-goods market equilibrium

Let’s start by computing the market equilibrium of a two-good problem.
We consider a market for two related products, good 0 and good 1, with price vector p = (pg, ;)
Supply of good ¢ at price p is
q; (p) = biv/pi
Demand of good ¢ at price p is
a7 (p) = exp(—(azp + a;1p1)) + ¢;

Here ¢;, b; and a;; are parameters.

For example, the two goods might be computer components that are typically used together, in which case they are
complements. Hence demand depends on the price of both components.

The excess demand function is

eilp) =q¢(p) —ai(p), i=0,1

108 Chapter 7. Using Newton’s Method to Solve Economic Models

Intermediate Quantitative Economics with Python

An equilibrium price vector p* satisfies e, (p*) = 0.

A= %00 o1 , b= bo and c= ‘o
aip Q11 by 1

We set

for this particular question.

A graphical exploration

Since our problem is only two-dimensional, we can use graphical analysis to visualize and help understand the problem.

Our first step is to define the excess demand function

The function below calculates the excess demand for given parameters

@jax.jit
def e(p, A, b, c):
return jnp.exp(-A @ p) + ¢ — b * jnp.sqgrt (p)

Our default parameter values will be

A = jnp.array([[0.5, 0.4], [0.8, 0.2]])
jnp.ones (2)
c = jnp.ones(2)

on
Il

At a price level of p = (1, 0.5), the excess demand is

p = jnp.array([1, 0.5])
ex_demand = e(p, A, b, <)

print (
f"The excess demand for good 0 is {ex_demand[0]:.3f} \n"
f"The excess demand for good 1 is {ex_demand[1]:.3f}"

The excess demand for good 0 is 0.497
The excess demand for good 1 is 0.699

To increase the efficiency of computation, we will use the power of vectorization using jax . vmap. This is much faster
than the python loops.

Create vectorization on the first axis of p.
e_vectorized_p_1 = jax.vmap(e, in_axes=(0, None, None, None))

Create vectorization on the second axis of p.
e_vectorized = jax.vmap (e_vectorized_p_1, in_axes=(0, None, None, None))

Next we plot the two functions e, and e; on a grid of (p,, p;) values, using contour surfaces and lines.

We will use the following function to build the contour plots

7.4. Multivariate Newton’s method 109

https://docs.jax.dev/en/latest/_autosummary/jax.vmap.html

Intermediate Quantitative Economics with Python

def plot_excess_demand(ax, good=0, grid_size=100, grid_max=4, surface=True):
p_grid = jnp.linspace (0, grid_max, grid_size)

Create meshgrid for all combinations of p_1 and p_2
P1, P2 = jnp.meshgrid(p_grid, p_grid, indexing="ij")

Stack to create array of shape (grid _size, grid_size, 2)
P = jnp.stack ([P1l, P2], axis=-1)

Compute all values at once using vectorized function
z_full = e_vectorized(P, A, b, c)
z = z_full[:, :, good]

if surface:
csl = ax.contourf (p_grid, p_grid, z.T, alpha=0.5)
plt.colorbar(csl, ax=ax, format=" ")

ctrl = ax.contour (p_grid, p_grid, z.T, levels=[0.0])
ax.set_xlabel ("Sp_0S")

ax.set_ylabel ("Sp_1S$")

ax.set_title(f"Excess demand for good {good}")
plt.clabel (ctrl, inline=1, fontsize=13)

Here’s our plot of e:

fig, ax = plt.subplots()
plot_excess_demand (ax, good=0)
plt.show ()

110 Chapter 7. Using Newton’s Method to Solve Economic Models

Intermediate Quantitative Economics with Python

Excess demand for good 0

2.000000

1.600000

1.200000

0.800000

0.400000

0.000000

-0.400000

-0.800000

-1.200000
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Here’s our plot of e;:

fig, ax = plt.subplots/()
plot_excess_demand (ax, good=1)
plt.show ()

7.4. Multivariate Newton’s method 111

Intermediate Quantitative Economics with Python

Excess demand for good 1

2.000000

1.600000

1.200000

0.800000

0.400000

0.000000

-0.400000

-0.800000

-1.200000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Po

We see the black contour line of zero, which tells us when e,(p) = 0.
For a price vector p such that e, (p) = 0 we know that good 7 is in equilibrium (demand equals supply).

If these two contour lines cross at some price vector p*, then p* is an equilibrium price vector.

fig, ax = plt.subplots(figsize=(10, 5.7))
for good in (0, 1):

plot_excess_demand (ax, good=good, surface=False)
plt.show ()

112 Chapter 7. Using Newton’s Method to Solve Economic Models

Intermediate Quantitative Economics with Python

Excess demand for good 1

4.0
3.5 A
o
3.0
2.5
g 2.0
151
1.0 - 0—
0.5 A
0-0 T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Po
It seems there is an equilibrium close to p = (1.6, 1.5).
Using a multidimensional root finder
To solve for p* more precisely, we use a zero-finding algorithm from scipy.optimize.
We supply p = (1, 1) as our initial guess.
init_p = Jjnp.ones(2)
This uses the modified Powell method to find the zero
$%stime
solution = root (lambda p: e(p, A, b, c¢), init_p, method="hybr")
CPU times: user 6.83 ms, sys: 1.75 ms, total: 8.59 ms
Wall time: 4.25 ms
Here’s the resulting value:
p = solution.x
p
array ([1.57080182, 1.46928838])
This looks close to our guess from observing the figure. We can plug it back into e to test that e(p) ~ 0:
e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()
7.4. Multivariate Newton’s method 113

https://docs.scipy.org/doc/scipy/reference/optimize.root-hybr.html#optimize-root-hybr

Intermediate Quantitative Economics with Python

2.0383694732117874e-13

This is indeed a very small error.

Adding gradient information
In many cases, for zero-finding algorithms applied to smooth functions, supplying the Jacobian of the function leads to
better convergence properties.

Here, we manually calculate the elements of the Jacobian

Oe de,
&) 5 p)
Io) = [gf,;(p) 2;1@)1

def jacobian_e(p, A, b, c)
p_0, p_.1 =p
a_00, a_01 = A[O,]
a_10, a_11 = A[1, :]
j_00 = -a_00 * jnp.exp(-a_00 * p_0) - (b[0] / 2) * p_0 ** (=1 / 2)
j_01 = -a_01 * jnp.exp(-a_01 * p_1)
J_10 = -a_10 * jnp.exp(-a_10 * p_0)
j_11 = -a_11 * jnp.exp(-a_11 * p_1) - (b[l] / 2) * p_1 ** (-1 / 2)
]

J = [[j_00, j_01], [j_10, j_11]
return jnp.array (J)

$%time

solution = root (
lambda p: e(p, A, b, <),
init_p,

jac = lambda p: jacobian_e(p, A, b, c),
method="hybr",

CPU times: user 260 ms, sys: 21.8 ms, total: 282 ms
Wall time: 391 ms

Now the solution is even more accurate (although, in this low-dimensional problem, the difference is quite small):

p = solution.x
e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

1.3322676295501878e-15

Using Newton’s method
Now let’s use Newton’s method to compute the equilibrium price using the multivariate version of Newton’s method
Pny1 = Pn — Je(pn)_le(pn) (76)

This is a multivariate version of (7.3.1)

(Here J,(p,,) is the Jacobian of e evaluated at p,,.)

114 Chapter 7. Using Newton’s Method to Solve Economic Models

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Intermediate Quantitative Economics with Python

The iteration starts from some initial guess of the price vector pj,.

Here, instead of coding Jacobian by hand, we use the jacobian () function in the jax library to auto-differentiate and
calculate the Jacobian.

With only slight modification, we can generalize our previous attempt to multidimensional problems

def newton (f, x_0, tol=le-5, max_iter=10) :

x = x_0
f_jac = jax.Jjacobian (f)
@jax.jit
def g(x):
return x - jnp.linalg.solve (f_jac(x), f(x))

error = tol + 1

n =0
while error > tol:
n += 1

if n > max_iter:

raise Exception("Max iteration reached without convergence")
y = q(x)
if any(jnp.isnan(y)):

raise Exception("Solution not found with NaN generated")

error = jnp.linalg.norm(x — y)

X =Yy

print (f"iteration {n}, error = {error:.5f}")
print ("\n" + f"Result = {x} \n")
return x

We find the algorithm terminates in 4 steps

o\°

$time
p = newton (lambda p: e(p, A, b, c), init_p)

iteration 1, error = 0.62515
iteration 2, error = 0.11152
iteration 3, error = 0.00258
iteration 4, error = 0.00000
Result = [1.57080182 1.46928838]

CPU times: user 334 ms, sys: 29.9 ms, total: 364 ms
Wall time: 454 ms

e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

1.4632739464559563e-13

The result is very accurate.

With the larger overhead, the speed is not better than the optimized scipy function.

7.4. Multivariate Newton’s method 115

Intermediate Quantitative Economics with Python

7.4.2 A high-dimensional problem

Our next step is to investigate a large market with 3,000 goods.

The excess demand function is essentially the same, but now the matrix A is 3000 x 3000 and the parameter vectors b
and c are 3000 x 1.

dim = 3000

Create JAX random key
key = jax.random.PRNGKey (0)

Create a random matrix A and normalize the columns to sum to one
A = jax.random.uniform(key, (dim, dim))

s = jnp.sum (A, axis=0)

A=A/ s

Set up b and c

b = jnp.ones (dim)

c = Jjnp.ones (dim)

Here’s our initial condition

init_p = jnp.ones (dim)

p = newton (lambda p: e(p, A, b, c), init_p)

iteration 1, error = 23.22262

iteration 2, error = 3.94537

iteration 3, error = 0.08500

iteration 4, error = 0.00004

iteration 5, error = 0.00000

Result = [1.50723773 1.51041603 1.50134795 ... 1.49941629 1.49033692 1.49666807]

CPU times: user 8.21 s, sys: 1.96 s, total: 10.2 s
Wall time: 9.45 s

e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

4.440892098500626e-16

With the same tolerance, we compare the runtime and accuracy of Newton’s method to SciPy’s root function

$%time

solution = root (
lambda p: e(p, A, b, c),
init_p,

jac = lambda p: jax.jacobian(e) (p, A, b, c),
method="hybr",
tol=1le-5,

116 Chapter 7. Using Newton’s Method to Solve Economic Models

Intermediate Quantitative Economics with Python

CPU times: user 37.3 s, sys: 109 ms, total: 37.5 s
Wall time: 37.8 s

p = solution.x
e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

9.209231102147442e-07

7.5 Exercises

© Exercise 7.5.1

Consider a three-dimensional extension of the Solow fixed point problem with
2 3 3
A=12 4 2|, s=02, a=05 6§=038
1 5 1
As before the law of motion is
kyoy =g(k,) where g(k):=sAk*+ (1—90)k
However, k, is now a 3 x 1 vector.
Solve for the fixed point using Newton’s method with the following initial values:

kly = (1,1,1)
k2, = (3,5,5)
k3, = (50,50, 50)

Hint

« The computation of the fixed point is equivalent to computing k* such that g(k*) — k*

« If you are unsure about your solution, you can start with the solved example:
2 00
A= [0 2 0}
0 0 2

with s = 0.3, a = 0.3, and § = 0.4 and starting value:
ko= (1,1,1)

The result should converge to the analytical solution.

© Solution

Let’s first define the parameters for this problem

7.5. Exercises

117

Intermediate Quantitative Economics with Python

A = jnp.array([[2.0, 3.0, 3.0], [2.0, 4.0, 2.0], [1.0, 5.0, 1.011)

s = 0.2
a= 0.5
8 =0.8

initLs = [Jjnp.ones(3), Jjnp.array([3.0, 5.0, 5.0]), Jjnp.repeat (50.0,

Then define the multivariate version of the formula for the (7.2.1)

@jax.jit

def multivariate_solow(k, A=A, s=s, a=a, 0=0):
return s * jnp.dot (A, k**a) + (1 - &) * k

Let’s run through each starting value and see the output
attempt = 1
for init in initls:
print (f'Attempt {attempt}: Starting value is {init} \n'")

%Stime k = newton(lambda k: multivariate_solow(k) - k, \
init)
print ('-'*64)

attempt += 1

Attempt 1: Starting value is [1. 1. 1.]

iteration 1, error = 50.49630

iteration 2, error = 41.10937

iteration 3, error = 4.29413

iteration 4, error = 0.38543
5, error = 0.00544
6, 0.00000

iteration

iteration error =

Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 310 ms, sys: 22 ms, total: 332 ms
Wall time: 404 ms

Attempt 2: Starting value is [3. 5. 5.]

iteration 1, error = 2.07011
iteration 2, error = 0.12642
iteration 3, error = 0.00060
iteration 4, error = 0.00000

~

Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 119 ms, sys: 6.07 ms, total: 125 ms
Wall time: 137 ms

Attempt 3: Starting value is [50. 50. 50.]

iteration 1, error = 73.00943
iteration 2, error = 6.49379
iteration 3, error = 0.68070
iteration 4, error = 0.01620
iteration 5, error = 0.00001
iteration 6, error = 0.00000
Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 270 ms, sys: 21.5 ms, total: 291 ms
Wall time: 327 ms

3)1

118 Chapter 7. Using Newton’s Method to Solve Economic Models

Intermediate Quantitative Economics with Python

We find that the results are invariant to the starting values given the well-defined property of this question.
But the number of iterations it takes to converge is dependent on the starting values.

Let’s substitute the output back into the formula to check our last result
multivariate_solow(k) - k

Array([0., 0., 0.], dtype=float64)
Note the error is very small.

We can also test our results on the known solution
A = jnp.array([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 2.011)

s =

Il
o o o
Sw W

a
B =

init = jnp.repeat (1.0, 3)

$%time

k = newton(lambda k: multivariate_solow(k, A=A, s=s, a=a, ©5=8) - k, init)
iteration 1, error = 1.57459

iteration 2, error = 0.21345

iteration 3, error = 0.00205

iteration 4, error = 0.00000

Result = [1.78467418 1.78467418 1.78467418]

CPU times: user 264 ms, sys: 24.6 ms, total: 289 ms
Wall time: 325 ms

The result is very close to the ground truth but still slightly different.

$%time
k = newton (
lambda k: multivariate_solow(k, A=A, s=s, a=a, 5=8) - k, 1init, tol=le-7
)
iteration 1, error = 1.57459
iteration 2, error = 0.21345
iteration 3, error = 0.00205
iteration 4, error = 0.00000
iteration 5, error = 0.00000
Result = [1.78467418 1.78467418 1.78467418]

CPU times: user 240 ms, sys: 14.4 ms, total: 255 ms
Wall time: 279 ms

We can see it steps towards a more accurate solution.

© Exercise 7.5.2

In this exercise, let’s try different initial values and check how Newton’s method responds to different starting points.

7.5. Exercises 119

Intermediate Quantitative Economics with Python

Let’s define a three-good problem with the following default values:

0.2 0.1 0.7 1 1
A=103 02 05/, b= |1 and c=|1
0.1 0.8 0.1 1 1

For this exercise, use the following extreme price vectors as initial values:

ply = (5,5,5)
p20 - (13 la 1)
p3p = (4.5,0.1,4)

Set the tolerance to 1le — 15 for more accurate output.

© Solution

Define parameters and initial values

A = jnp.array([(0.2, ©0.1, 0.7], [0.3, 0.2, 0.5], [0.1, 0.8, 0.111])

b = jnp.array([1.0, 1.0, 1.0])
c = jnp.array([1.0, 1.0, 1.01)
initLs = [jnp.repeat (5.0, 3), Jnp.ones(3), Jnp.array([4.5, 0.1, 4.01)]

Let’s run through each initial guess and check the output

attempt = 1
for init in initLs:
print (f"Attempt {attempt}: Starting value is {init} \n")
%time p = newton(lambda p: e(p, A, b, c), init, tol=le-15, max_iter=15)
print ("-" * 64)
attempt += 1

Attempt 1: Starting value is [5. 5. 5.]
iteration 1, error = 9.24381

Attempt 2: Starting value is [1. 1. 1.]

iteration 1, error = 0.73419
iteration 2, error = 0.12472
iteration 3, error = 0.00269
iteration 4, error = 0.00000
iteration 5, error = 0.00000
iteration 6, error = 0.00000

~

Result = [1.49744442 1.49744442 1.49744442]

CPU times: user 112 ms, sys: 8.3 ms, total: 120 ms
Wall time: 131 ms

Attempt 3: Starting value is [4.5 0.1 4.]

iteration 1, error = 4.89202
iteration 2, error = 1.21206
iteration 3, error = 0.69421
iteration 4, error = 0.16895
iteration 5, error = 0.00521
iteration 6, error = 0.00000
iteration 7, error = 0.00000
+rerationr—8,—error——06-66660

~

120 Chapter 7. Using Newton’s Method to Solve Economic Models
Result = [1.49744442 1.49744442 1.49744442]

CPU times: user 116 ms, sys: 7.89 ms, total: 124 ms

T T 7T 4t A NN

Intermediate Quantitative Economics with Python

Exception Traceback (most recent call last)
File <timed exec>:1

Cell In[34], line 17, in newton(f, x_0, tol, max_iter)

15y = a(x)
16 if any(jnp.isnan(y)):
=== {7 raise Exception("Solution not found with NaN generated")
18 error = jnp.linalg.norm(x - y)
19 x =y

Exception: Solution not found with NaN generated
We can see that Newton’s method may fail for some starting values.
Sometimes it may take a few initial guesses to achieve convergence.
Substitute the result back to the formula to check our result

e(p, A, b, ¢c)

Array([0., 0., 0.], dtype=float64)

We can see the result is very accurate.

7.5. Exercises 121

Intermediate Quantitative Economics with Python

122 Chapter 7. Using Newton’s Method to Solve Economic Models

Part 11

Elementary Statistics

123

CHAPTER
EIGHT

ELEMENTARY PROBABILITY WITH MATRICES

This lecture uses matrix algebra to illustrate some basic ideas about probability theory.

After introducing underlying objects, we'll use matrices and vectors to describe probability distributions.

Among concepts that we'll be studying include

« a joint probability distribution

« marginal distributions associated with a given joint distribution

« conditional probability distributions

« statistical independence of two random variables

« joint distributions associated with a prescribed set of marginal distributions
- couplings
— copulas

« the probability distribution of a sum of two independent random variables
- convolution of marginal distributions

« parameters that define a probability distribution

« sufficient statistics as data summaries

We'll use a matrix to represent a bivariate or multivariate probability distribution and a vector to represent a univariate

probability distribution

This companion lecture describes some popular probability distributions and describes how to use Python to sample from

them.

In addition to what’s in Anaconda, this lecture will need the following libraries:

'pip install prettytable

As usual, we'll start with some imports

import numpy as np

import matplotlib.pyplot as plt

import prettytable as pt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib_inline.backend_inline import set_matplotlib_formats
set_matplotlib_formats('retina')

125

Intermediate Quantitative Economics with Python

8.1 Sketch of Basic Concepts

We'll briefly define what we mean by a probability space, a probability measure, and a random variable.

For most of this lecture, we sweep these objects into the background

© Note

Nevertheless, they’ll be lurking beneath induced distributions of random variables that we’ll focus on here. These
deeper objects are essential for defining and analysing the concepts of stationarity and ergodicity that underly laws of
large numbers. For a relatively nontechnical presentation of some of these results see this chapter from Lars Peter
Hansen and Thomas J. Sargent’s online monograph titled “Risk, Uncertainty, and Values”:https://Iphansen.github.io/
QuantMFR/book/1_stochastic_processes.html.

Let €2 be a set of possible underlying outcomes and let w € €2 be a particular underlying outcomes.

Let G C 2 be a subset of ().

Let & be a collection of such subsets G C €.

The pair), & forms our probability space on which we want to put a probability measure.

A probability measure 1 maps a set of possible underlying outcomes G € & into a scalar number between 0 and 1
« this is the “probability” that X belongs to A, denoted by Prob{X € A}.

A random variable X (w) is a function of the underlying outcome w € Q.

The random variable X (w) has a probability distribution that is induced by the underlying probability measure 1 and
the function X (w):

Prob(X € A) = //,L(w)dw (8.1)
g

where G is the subset of () for which X (w) € A.

We call this the induced probability distribution of random variable X.

Instead of working explicitly with an underlying probability space €2, & and probability measure 1, applied statisticians
often proceed simply by specifying a form for an induced distribution for a random variable X.

That is how we'll proceed in this lecture and in many subsequent lectures.

8.2 What Does Probability Mean?

Before diving in, we’ll say a few words about what probability theory means and how it connects to statistics.

We also touch on these topics in the quantecon lectures https://python.quantecon.org/prob_meaning.html and https://
python.quantecon.org/navy_captain.html.

For much of this lecture we'll be discussing fixed “population” probabilities.

These are purely mathematical objects.

To appreciate how statisticians connect probabilities to data, the key is to understand the following concepts:
« A single draw from a probability distribution

« Repeated independently and identically distributed (i.i.d.) draws of “samples” or “realizations” from the same
probability distribution

126 Chapter 8. Elementary Probability with Matrices

https://lphansen.github.io/QuantMFR/book/1_stochastic_processes.html
https://lphansen.github.io/QuantMFR/book/1_stochastic_processes.html
https://python.quantecon.org/prob_meaning.html
https://python.quantecon.org/navy_captain.html
https://python.quantecon.org/navy_captain.html

Intermediate Quantitative Economics with Python

« A statistic defined as a function of a sequence of samples

« An empirical distribution or histogram (a binned empirical distribution) that records observed relative fre-
quencies

o The idea that a population probability distribution is what we anticipate relative frequencies will be in a long
sequence of i.i.d. draws. Here the following mathematical machinery makes precise what is meant by anticipated
relative frequencies

- Law of Large Numbers (LLN)
- Central Limit Theorem (CLT)
Scalar example
Let X be a scalar random variable that takes on the I possible values 0, 1, 2, ..., I — 1 with probabilities
Prob(X =i) = f;

where
f;20, Y fi=1
We sometimes write
X ~{fi¥i5
as a short-hand way of saying that the random variable X is described by the probability distribution { f;}1=1.
Consider drawing a sample z, z{, ..., £ y_; of IV independent and identically distributoed draws of X.
What do the “identical” and “independent” mean in IID or iid (“identically and independently distributed”)?
« “identical” means that each draw is from the same distribution.

 “independent” means that joint distribution equal products of marginal distributions, i.e.,

Prob{zy, = iy, =iy, ..., xn_1 = in_q} = Prob{zy =iy} -+ - Prob{x; ; =i;_;}
= fiofil T fz'N,l

We define an empirical distribution as follows.
Foreach:=0,...,1 — 1, let

N; = number of times X = ¢,
I-1

N = Z N, total number of draws,
i=0

fi = % ~ frequency of draws for which X = ¢
Key concepts that connect probability theory with statistics are laws of large numbers and central limit theorems
LLN:
o A Law of Large Numbers (LLN) states that fl — fias N — o0
CLT:
« A Central Limit Theorem (CLT) describes a rate at which fi — f;
Remarks
« For “frequentist” statisticians, anticipated relative frequency is all that a probability distribution means.
« But for a Bayesian it means something else — something partly subjective and purely personal.

- we say “partly” because a Bayesian also pays attention to relative frequencies

8.2. What Does Probability Mean? 127

Intermediate Quantitative Economics with Python

8.3 Representing Probability Distributions

A probability distribution Prob(X € A) can be described by its cuamulative distribution function (CDF)
Fy(z) =Prob{X < z}.

Sometimes, but not always, a random variable can also be described by density function f(x) that is related to its CDF
by

Prob{X € B} = / f(t)dt
B

te
x
Fo)= [st
—0o0
Here B is a set of possible X’s whose probability of occurring we want to compute.
When a probability density exists, a probability distribution can be characterized either by its CDF or by its density.
For a discrete-valued random variable
« the number of possible values of X is finite or countably infinite
« we replace a density with a probability mass function, a non-negative sequence that sums to one
» we replace integration with summation in the formula like (8.1) that relates a CDF to a probability mass function
In this lecture, we mostly discuss discrete random variables.
Doing this enables us to confine our tool set basically to linear algebra.

Later we'll briefly discuss how to approximate a continuous random variable with a discrete random variable.

8.4 Univariate Probability Distributions

We'll devote most of this lecture to discrete-valued random variables, but we'll say a few things about continuous-valued
random variables.

8.4.1 Discrete random variable

Let X be a discrete random variable that takes possible values: ¢ = 0,1,...,] —1 = X.
Here, we choose the maximum index I — 1 because of how this aligns nicely with Python’s index convention.

Define f; = Prob{X = i} and assemble the non-negative vector

o
r=| 0 (82)
fra
for which f; € [0, 1] for each ¢ and Zf;é fi=1
This vector defines a probability mass function.
The distribution (8.2) has parameters {f;},_o .., o since f; ; =1 — 25;02 fi

These parameters pin down the shape of the distribution.

128 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

(Sometimes I = oc.)
Such a “non-parametric” distribution has as many “parameters” as there are possible values of the random variable.
We often work with special distributions that are characterized by a small number parameters.
In these special parametric distributions,
fi=9(i;0)
where 6 is a vector of parameters that is of much smaller dimension than 1.
Remarks:
« A statistical model is a joint probability distribution characterized by a list of parameters
« The concept of parameter is intimately related to the notion of sufficient statistic.
« A statistic is a nonlinear function of a data set.
« Sufficient statistics summarize all information that a data set contains about parameters of statistical model.
- Note that a sufficient statistic corresponds to a particular statistical model.
- Sufficient statistics are key tools that Al uses to summarize or compress a big data set.
« R. A. Fisher provided a rigorous definition of information - see https://en.wikipedia.org/wiki/Fisher_information
An example of a parametric probability distribution is a geometric distribution.

It is described by
fi =Prob{X =i} =(1—-X)\, Xe€]0,1], i=0,1,2,..

Evidently, ZZO fi=1

Let 6 be a vector of parameters of the distribution described by f, then

£,(0) >0, fi(0) =1
i=0

8.4.2 Continuous random variable
Let X be a continous random variable that takes values X € X = [Xy, X] whose distributions have parameters 6.

Prob{X € A} = / flz;0)dz; f(x;0) >0
reA

where A is a subset of X and

Prob{X € X} =1

8.5 Bivariate Probability Distributions

We'll now discuss a bivariate joint distribution.

To begin, we restrict ourselves to two discrete random variables.

8.5. Bivariate Probability Distributions 129

https://en.wikipedia.org/wiki/Fisher_information

Intermediate Quantitative Economics with Python

Let X,Y be two discrete random variables that take values:
X e{0,..,I -1}

Y €{0,..,J —1}

Then their joint distribution is described by a matrix

FIX.]:[fij}ie{O 1-1},5€{0,...,J—1}

whose elements are
fij=Prob{X =4, Y =3} >0

where

R

8.6 Marginal Probability Distributions

The joint distribution induce marginal distributions

J—1
Prob{X =i} = f=p,; i=0,..,1—1
J=0

-1
Prob{Y =j} =Y f;=v;, j=0,..,J—1
=0
For example, let a joint distribution over (X, Y") be
25 1
F= [.15 .5] 8-3)

The implied marginal distributions are:

Prob{X =0} = .25+ .1 = .35
Prob{X =1} = .15+ .5 = .65
Prob{Y =0} = .25+ .15 =4
Prob{Y =1} =.1+.5=.6

Digression: If two random variables X, Y are continuous and have joint density f(x, y), then marginal distributions can
be computed by

f(z) = /Rf(x,y)dy
f(y) = /R fy)de

130 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

8.7 Conditional Probability Distributions

Conditional probabilities are defined according to

Prob{AN B
Prob{A | B} = Pro{b{B}}
where A, B are two events.
For a pair of discrete random variables, we have the conditional distribution
fis Prob{X =1i,Y = j}
S fy Prob{Y =}

Prob{X =i|Y = j} =

where i =0,...,I —1, j=0,...,J—1.
Note that
Zi fij

Zi fij =1

> Prob{X, =i|Y; = j} =

Remark: The mathematics of conditional probability implies:

Prob{X =4,Y = j} Prob{Y = j|X = i}Prob{ X =i}
Prob{Y =j} Prob{Y = j}

Prob{X =i|Y = j} = (3.4)

© Note

Formula (8.4) is also what a Bayesian calls Bayes’ Law. A Bayesian statistician regards marginal probability distri-
bution Prob(X =), = 1, ..., J as a prior distribution that describes his personal subjective beliefs about X. He
then interprets formula (8.4) as a procedure for constructing a posterior distribution that describes how he would
revise his subjective beliefs after observing that Y equals j.

For the joint distribution (8.3)

1 1
Prob{X =0|Y =1} = T5- 6

8.8 Transition Probability Matrix

Consider the following joint probability distribution of two random variables.

Let X, Y be discrete random variables with joint distribution
Prob{X =i,Y = j} = p;;
where ¢ =0,...,1 —1;5=0,...,J —1land

ZZPU: L pi; 2 0.
i g

An associated conditional distribution is
Pij . PI‘Ob{Y =7,X= Z}
Zj Pij Prob{X =i}

Prob{Y =i|X = j} =

8.7. Conditional Probability Distributions 131

Intermediate Quantitative Economics with Python

We can define a transition probability matrix P with ¢, j component
py; = Prob{Y = j|X =i} = i
> j Pij

where

{Pu pu}
Pa1 P22
The first row is the probability that Y = 7, = 0, 1 conditional on X = 0.

The second row is the probability that Y = j, 7 = 0, 1 conditional on X = 1.
Note that

_ ijij
* Zj Pij = 2, Pij

= 1, so each row of the transition matrix P is a probability distribution (not so for each column).

8.9 Application: Forecasting a Time Series

Suppose that there are two time periods.
o t =0 “today”
o t =1 “tomorrow”
Let X (0) be a random variable to be realized at ¢t = 0, X (1) be a random variable to be realized at ¢ = 1.
Suppose that
Prob{X(0) =i, X(1) = j} = f;; 2 0 = 0,-, [— 1

2.2 Js=1
i

[is a joint distribution over [X (0), X (1)].

A conditional distribution is

Prob{X (1) = j|X(0) =i} =

Remark:

o This formula is a workhorse for applied economic forecasters.

8.10 Statistical Independence

Random variables X and Y are statistically independent if
Prob{X =4,Y = j} = f9;

where

Prob{X =i} =f,>0> f,=1
Prob{Y =j} =g;>0 > g,=1

132 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

Conditional distributions are

Prob{X = i|Y = j} = zfi?ﬂ_'g_ - f;?j = f,
1 719] J
fi9; _ fig; .

Prob{Y:j|X:i}:Z Fa T T =g;
jJidj i

8.11 Means and Variances

The mean and variance of a discrete random variable X are
px = E[X] = kProb{X = k}
k

0% =D[X] =Y (k—E[X])* Prob{X = k}

A continuous random variable having density fy (z)) has mean and variance

Hx [E[X}:[zfx(x)de

=D =E[(X =] = [@) fxoie

8.12 Matrix Representations of Some Bivariate Distributions

Let’s use matrices to represent a joint distribution, conditional distribution, marginal distribution, and the mean and
variance of a bivariate random variable.

The table below illustrates a probability distribution for a bivariate random variable.

P=lnl=] 03 01)

Marginal distributions are

Prob(X =i) = > f,;=u,
J

Prob(Y = j) = Z fi=v;

Sampling:
Let’s write some Python code that let’s us draw some long samples and compute relative frequencies.

The code will let us check whether the “sampling” distribution agrees with the “population” distribution - confirming that
the population distribution correctly tells us the relative frequencies that we should expect in a large sample.

specify parameters

xs = np.array ([0, 1])

ys = np.array([10, 20])

f = np.array([[0.3, 0.2], [0.1, 0.4]11])
f_cum = np.cumsum(f)

(continues on next page)

8.11. Means and Variances 133

Intermediate Quantitative Economics with Python

(continued from previous page)

draw random numbers

p = np.random.rand(1_000_000)

x = np.vstack ([xs[1l]*np.ones (p.shape), ys[l]*np.ones (p.shape)])
map to the bivariate distribution

x[0, p < f_cum[2]] = xs[1]
x[1, p < f_cum([2]] = ys[0]
x[0, p < f_cum[1]] = xs[0]
x[1, p < f_cum[1]] = ys[1]
x[0, p < f_cum[0]] = xs[0]
x[1, p < f_cum[0]] = ys[O0]
print (x)
[l O 1 1. 1 1 0.]
[10. 20. 20 . 20. 20. 10.11]

© Note

To generate random draws from the joint distribution F', we use the inverse CDF technique described in this com-
panion lecture.

marginal distribution
xp = np.sum(x[0, :] == xs[0])/1_000_000
yp = np.sum(x[1, :] == ys[0])/1_000_000

print output

print ("marginal distribution for x")
xmtb = pt.PrettyTable ()

xmtb.field names = ['x_value', 'x_prob']
xmtb.add_row ([[0, xpl)

xmtb.add_row ([[1]1, 1-xpl)

print (xmtb)

Xs
Xs

print ("\nmarginal distribution for y")
ymtb = pt.PrettyTable()

ymtb.field_names = ['y_value', 'y_prob']
ymtb.add_row([ys[0], vypl)
ymtb.add_row([ys[1], 1-ypl)

print (ymtb)

marginal distribution for x

fom o +
| x_value | X_prob |
fom o +
| 0 \ 0.499291 |
| 1 | 0.5007090000000001 |
fom o +

marginal distribution for y
e e +
| y_value | y_prob |
e fomm +
(continues on next page)

134 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

0.400006
0.599994

xcl = x[0, x[1, :] == ys[0]]
xc2 = x[0, x[1, :] == ys[1]1]
ycl = x[1, x[0, :] == xs[0]]
yc2 = x[1, x[0, :] == xs[1]]
xclp = np.sum(xcl == xs[0])/len(xcl
xc2p = np.sum(xc2 == xs[0])/len (xc2
yclp = np.sum(ycl == ys[0])/len (ycl
yc2p = np.sum(yc2 == ys[0])/len(yc2

print output

print ("conditional distribution for
xctb pt.PrettyTable ()
xctb.field_names ['y_value', 'pro
xctb.add_row([ys[xclp, 1-xclpl)
xctb.add_row ([ysI xc2p, 1-xc2pl)
print (xctb)

]

0
1]

’
4

print ("\nconditional distribution £
yctb pt.PrettyTable ()
yctb.field names ["x_value',
yctb.add_row ([xs | yclp,
yctb.add_row ([xs[yc2p,
print (yctb)

lpr
l-yclpl)
1-yc2p])

]

0
1]

4
’
conditional distribution for x

0.7494787578186327
0.33249499161658286

conditional distribution for y
fo———— e
prob (y=10)
.6004434287820128
.2001362068586744

+ — — + — +

Let’s calculate population marginal and condition

)

(continued from previous page)

)
)
)
)

X")

b(x=0)"', 'prob(x=1)"']

or yn)

ob (y=10)"', 'prob (y=20)"']

.2505212421813673
.6675050083834171

prob (y=20)
_____________________ +
0.39955657121798716
0.7998637931413256
,,,,,,,,,,,,,,,,,,,,, +

al probabilities using matrix algebra.

Y Y2 €
0.3 0.2 0.5
0.1 04 0.5
0.4 0.6 1

8.12. Matrix Representations of Some Bi

variate Distributions 135

Intermediate Quantitative Economics with Python

(1) Marginal distribution:

var i ovar; varg
coio05 05
y P04 06
(2) Conditional distribution:
T T, Ty

y:y2 : ﬁ. %033 O:é.;.(.)...(w
) Y1 Ya
x:xl : Lg : 06 0?) : 04
x:% : OT}) : 02 0:.?.). _ 0 .

These population objects closely resemble the sample counterparts computed above.

Let’s wrap some of the functions we have used in a Python class that will let us generate and sample from a discrete
bivariate joint distribution.

class discrete_bijoint:

def _ _init__ (self, f, xs, ys):
'"'"'initialization

parameters:

f: the bivariate joint probability matrix

xs: values of x vector

ys: values of y vector

rro

self.f, self.xs, self.ys = f, xs, ys

def joint_tb(self):
""'print the joint distribution table'''’

xs = self.xs

ys = self.ys

f = self.f

jtb = pt.PrettyTable ()

jtb.field_names = ['x_value/y_value', *ys, 'marginal sum for x']

for i in range(len(xs)):

jtb.add_row ([xs[i], *f[i, :], np.sum(f[i, :]1)1)
jtb.add_row(['marginal_ sum for y', *np.sum(f, 0), np.sum(f)])
print ("\nThe joint probability distribution for x and y\n", jtb)
self.jtb = Jjtb

def draw(self, n):
"'"'draw random numbers

parameters:
n: number of random numbers to draw

rro

(continues on next page)

136 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

def

def

(continued from previous page)

xs = self.xs

ys = self.ys

f_cum = np.cumsum(self.f)
p = np.random.rand(n)

x = np.empty([2, p.shape[0]])
1f = len(f_cum)

1x = len(xs) -1

ly = len(ys)-1

for i in range(1lf):

x[0, p < f_cum[lf-1-i]] = xs[1lx]
x[1, p < f_cum[lf-1-i]] = ys[ly]
if ly ==
1x —= 1
ly = len(ys)-1
else:
ly =1
self.x = x

self.n = n

marg_dist (self) :
"'"'"marginal distribution'''

x = self.x

xs = self.xs

ys = self.ys

n = self.n

xmp = [np.sum(x[0, :] == xs[i])/n for i in range(len(xs))]
ymp = [np.sum(x[1, :] == ys[i])/n for i in range (len(ys))]

print output
xmtb = pt.PrettyTable()
ymtb = pt.PrettyTable()
xmtb.field _names = ['x_value', 'x_prob']
ymtb.field names = ['y_value', 'y_prob']
for i in range (max(len(xs), len(ys))):
if 1 < len(xs):
xmtb.add_row([xs[i], xmp[i]])
if 1 < len(ys):
ymtb.add_row([ys[i], ymp[i]l])
xmtb.add_row (['sum', np.sum(xmp)])
ymtb.add_row(['sum', np.sum(ymp)])
print ("\nmarginal distribution for x\n", xmtb)
print ("\nmarginal distribution for y\n", ymtb)

self.xmp = xmp
self.ymp ymp

cond_dist (self):
"!"'conditional distribution'''
x = self.x

xs = self.xs
ys = self.ys

n = self.n

XCp = np.empty
yCp = np.empty

len(ys), len(xs)])
len(xs), len(ys)])
for i in range (max(len(ys), len(xs))):
if 1 < len(ys):
xi = x[0, x[1, :] == ys[i]]

(continues on next page)

8.12. Matrix Representations of Some Bivariate Distributions 137

Intermediate Quantitative Economics with Python

(continued from previous page)

idx = xi.reshape(len(xi), 1) == xs.reshape(l, len(xs))
xcp[i, :] = np.sum(idx, 0)/len(xi)
if 1 < len(xs):
yi = x[1, x[0, :] == xs[i]]
idy = yi.reshape(len(yi), 1) == ys.reshape(l, len(ys))

ycpli, :] = np.sum(idy, 0)/len(yi)

print output
xctb = pt.PrettyTable ()
yctb = pt.PrettyTable()
xctb.field_names = ['x_value', *xs, 'sum']
yctb.field _names = ['y_value', *ys, 'sum']
for i in range (max(len(xs), len(ys))):
if 1 < len(ys):
xctb.add_row([ys[i], *xcpl[i], np.sum(xcpl[i])])
if i < len(xs):
yctb.add_row([xs[i], *ycpli], np.sum(ycpl[i]l)])
print ("\nconditional distribution for x\n", =xctb)
print ("\nconditional distribution for y\n", yctb)

self.xcp = xcp
self.xyp ycp

Let’s apply our code to some examples.

Example 1

joint
d = discrete_bijoint (f, xs, ys)
d.joint_tb ()

The joint probability distribution for x and y
o +———— o o +

| x_value/y_value | 10 | 20 | marginal sum for x |
o +——— o o +
0	0.3	0.2	0.5
1 [0.1	0.4	0.5	
marginal_sum for y	0.4	0.6000000000000001	1.0
o +———— o o +

sample marginal
d.draw(1_000_000)
d.marg_dist ()

marginal distribution for x

o o —— +
| x_value | x_prob |
fom fom +
| 0 | 0.500451 |
| 1 | 0.499549
| sum | 1.0 |
fom fom +

(continues on next page)

138 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

(continued from previous page)

fom o +
| 10 | 0.40018

| 20 | 0.59982 |
| sum | 1.0 |
o o +

sample conditional
d.cond_dist ()

conditional distribution for x

fomm— et e o +

| x_value | 0 | 1 | sum |
o e o +———— +

| 10 | 0.7499550202408916 | 0.2500449797591084 | 1.0 |

| 20 | 0.33399019705911775 | 0.6660098029408823 | 1.0 |
o e o +——— +
conditional distribution for y

t——————— o o +———— +

| y_value | 10 | 20 | sum |

o B e it ELE o +——— +

| 0 | 0.5996930768446861 | 0.4003069231553139 | 1.0 |

| 1 | 0.20030667662231333 | 0.7996933233776867 | 1.0 |

o B i EE o +——— +

Example 2
xs_new = np.array([10, 20, 30])
ys_new = np.array ([1l, 21])
f_new = np.array([[0.2, 0.1], [0.1, 0.3], [0.15, 0.1511)
d_new = discrete_bijoint (f_new, xs_new, ys_new)
d_new.joint_tb ()

The Jjoint probability distribution for x and y

o o - e +
| x_value/y_value | 1 | 2 | marginal sum for x |
o o - o +
10	0.2	0.1	0.30000000000000004
20	0.1	0.3	0.4
30	0.15	0.15	0.3
marginal_sum for y	0.45000000000000007	0.55	1.0
Fom R fo——— o +

d_new.draw (1_000_000)
d_new.marg_dist ()

marginal distribution for x

o o —— +
| x_value | x_prob |
fom fom e ————— +
| 10 | 0.301229
20	0.39978
30	0.298991
sum	1.0
fom———— o +

(continues on next page)

8.12. Matrix Representations of Some Bivariate Distributions 139

Intermediate Quantitative Economics with Python

(continued from previous page)

marginal distribution for y

o —— o —— +
| y_value | y_prob |
o o +
1	0.451641
2	0.548359
sum	1.0
fom fom +

d_new.cond_dist ()

conditional distribution for x

o B o o +———
ot

| x_value | 10 | 20 | 30 | sum |
o o o B +———— +
| 1 | 0.4454002183149891 | 0.22289163295626394 | 0.33170814872874693 | 1.0 |
| 2 | 0.18248629091525806 | 0.5454693002212054 | 0.2720444088635365 | 1.0 |
o B it ELE e o +——— +

o= e o o= +
| y_value | 1 | 2 | sum |
om o o o +
10	0.66780090894303	0.33219909105696993	1.0
20	0.251805993296313	0.7481940067036871	1.0
30	0.5010619048733909	0.49893809512660914	1.0
o o Fom - +
8.13 A Continuous Bivariate Random Vector
A two-dimensional Gaussian distribution has joint density
1 z—p)? 2p(x— — — 1g)?
F,y) = (270,097 T— p2)Lexp |— ! (51) ~ 2p(x — g) (y — pp) n (y 52)
2(1—p?) g1 0102 93

Mll—p?eXp [_2(1ip2> ((méh)z _ 2@)y —) (952>2>]

g1 0102 93
We start with a bivariate normal distribution pinned down by

S
define the joint probability density function
def func(x, y, pl=0, p2=5, ol=np.sqrt(5), o2=np.sqrt(l), p=.2/np.sqrt(5*1)):
A= (2 * np.pi * 01l * 02 * np.sqgrt(l - p**2))**(-1)
B=-1/2/ (1 - p**2)
Cl = (x — pl)**2 / ol**2
C2 =2 *p * (x —nul) * (y — n2) / ol / o2
C3 = (y — p2)**2 / o2**2
return A * np.exp(B * (C1 - C2 + C3))

140 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

pl =0

p2 = 5

ol = np.sqrt(5)

02 = np.sqrt (1)

p = .2 / np.sqrt(5 * 1)

x = np.linspace
y = np.linspace
x_mesh, y_mesh

(-10, 10, 1_000)
(-10, 10, 1_000)
= np.meshgrid(x, y, indexing="ij")

Joint Distribution

Let’s plot the population joint density.

Smatplotlib notebook
fig = plt.figure()
ax = plt.axes (projection='3d")

surf = ax.plot_surface(x_mesh, y_mesh, func(x_mesh, y_mesh), cmap='viridis'")

plt.show ()

t 0.07
T 0.06
t 0.05
T 0.04
- 0.03
0.02
0.01
0.00

Smatplotlib notebook

fig = plt.figure()
ax = plt.axes (projection='3d")

curve = ax.contour (x_mesh, y_mesh, func(x_mesh, y_mesh), zdir='x")

plt.ylabel ('y")
(continues on next page)

8.13. A Continuous Bivariate Random Vector 141

Intermediate Quantitative Economics with Python

ax.set_zlabel ('f")
1)

ax.set_xticks ([
plt.show ()

(continued from previous page)

t 0.07
+ 0.06
+ 0.05
t 0.04
t 0.03
- 0.02
0.01
0.00

Next we can use a built-in numpy function to draw random samples, then calculate a sample marginal distribution from

the sample mean and variance.

p= np.array ([0, 5])
o= np.array([[5, .21,

n = 1_000_000
np.random.multivariate_normal (p, o,

(.2, 111

data =
x = datal:, 0]
y = datal[:, 1]

Marginal distribution

alpha=0.6)

plt.hist (x, bins=1_000,
np.std(x)

px_hat, ox_hat = np.mean(x),
print (px_hat, ox_hat)

X_sim = np.random.normal (px_hat,
plt.hist (x_sim, bins=1_000, alpha=0.4,

plt.show ()

ox_hat,

-0.001270474975041294 2.236390821768788

1_000_000)
histtype="step")

142

Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

4000 A

3000 A

2000 A

1000 A

-10 -5

plt.hist(y, bins=1_000, density=True, alpha=0.6)

py_hat, oy_hat = np.mean(y), np.std(y)
print (py_hat, oy_hat)

y_sim = np.random.normal (py_hat, oy_hat,
plt.hist(y_sim, bins=1_000, density=True,

plt.show ()

4.997959809934451 0.9990527758792724

1_000_000)
alpha=0.4, histtype="step")

8.13. A Continuous Bivariate Random Vector

143

Intermediate Quantitative Economics with Python

0.40 A

0.35 1

0.30 +

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

0.00 .
0

10

Conditional distribution

For a bivariate normal population distribution, the conditional distributions are also normal:

y—p
XY = 5]~ Nix + pox 22 030)|

z—p
[Y]X =a] ~ N[uy +poy UXX,U%(I —pQ)]

O Note

Please see this quantecon lecture for more details.

Let’s approximate the joint density by discretizing and mapping the approximating joint density into a matrix.
We can compute the discretized marginal density by just using matrix algebra and noting that
Jij

Prob{X =i|Y = j} = W
i1

Fixy = 0.

discretized marginal density

x = np.linspace(-10, 10, 1_000_000)

z = func(x, y=0) / np.sum(func(x, y=0))
plt.plot (x, z)

plt.show ()

144 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

le—6

3.5 1

3.0 A

2.5 1

2.0 A

1.5 1

1.0 4

0.5 1

0.0 A

-10.0 -75 -5.0 =25 0.0 2.5 5.0 7.5 10.0

The mean and variance are computed by

fij
Zi fij

E[X[Y =j] =) iProb{X =Y = j} = Zz

i
; > fij

2
DIX]Y =] = Z <Z - .UX\Y:j)
Let’s draw from a normal distribution with above mean and variance and check how accurate our approximation is.

discretized mean
px = np.dot (x, z)

discretized standard deviation
ox = np.sqrt(np.dot ((x — ux)**2, z))

sample

zz = np.random.normal (px, ox, 1 _000_000)

plt.hist (zz, bins=300, density=True, alpha=0.3, range=[-10, 10])
plt.show ()

8.13. A Continuous Bivariate Random Vector 145

Intermediate Quantitative Economics with Python

0.175 A

0.150 A

0.125 A

0.100 A

0.075 A

0.050 A

0.025 A

0.000

-100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

Fixx = 1.

y = np.linspace (0, 10, 1_000_000)

z = func(x=1, y=y) / np.sum(func(x=1, y=y))
plt.plot (y, z)

plt.show ()

146 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

le—6

4.0 A

3.5 1

3.0 1

2.5 1

2.0 1

1.5 1

1.0 4

0.5 1

0.0 A

discretized mean and standard deviation

py = np.dot (y,z)
oy = np.sqgrt(np.dot ((y - npy)**2, z))

sample
zz = np.random.normal (py,oy,1_000_000)

plt.hist (zz, bins=100, density=True, alpha=0.3)

plt.show ()

8.13. A Continuous Bivariate Random Vector

147

Intermediate Quantitative Economics with Python

0.40 A

0.35 A

0.30 A

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

0.00 T T .
0 2 4 6 8 10

We compare with the analytically computed parameters and note that they are close.

print (px, ox)
print(pl + p * o1l * (0 - p2) / 02, np.sqgrt(cl**2 * (1 - p**2)))

print (pny, oy)
print (p2 + p * 02 * (1 - pl) / ol, np.sqgrt(oc2**2 * (1 - p**2)))

-0.9997518414498444 2.2265841331697698
-1.0 2.227105745132009
5.039999456960768 0.9959851265795593
5.04 0.9959919678390986

8.14 Sum of Two Independently Distributed Random Variables

Let X,Y be two independent discrete random variables that take values in X, Y, respectively.
Define a new random variable Z = X + Y.
Evidently, Z takes values from Z defined as follows:

X={0,1,..,I—1}; f,=Prob{X =i}

Y ={0,1,...,J —1}; g; = Prob{Y = j}

Z =A{0,1,....,.1+J—2} hy =Prob{X +Y =k}

148 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

Independence of X and Y implies that

h =Prob{X =0,Y =k} +Prob{X =1,Y =k —1} +... + Prob{X =k, Y = 0}
h, = fogx + fi9k 1 + -+ froa91 + frgo for k=0,1,...14+J—-2

Thus, we have:
k
hy, = Zfigk—i =f*yg
i—0
where f * g denotes the convolution of the f and g sequences.

Similarly, for two random variables X, Y with densities fy, gy, the density of Z = X + Y is

f2(2) = / Fx (@) fy(z — 2)dz = fx * gy

where f * gy denotes the convolution of the f and gy functions.

8.15 Coupling

Start with a joint distribution

fij =Prob{X =4,Y = j}
1=0,---T—1
j=0,-J—1

stacked to an I x .J matrix

eg. I=1,J=1

where

f21 f22

From the joint distribution, we have shown above that we obtain unique marginal distributions.

[fn fu]

Now we'll try to go in a reverse direction.

We'll find that from two marginal distributions, can we usually construct more than one joint distribution that verifies
these marginals.

Each of these joint distributions is called a coupling of the two marginal distributions.

Let’s start with marginal distributions
Prob{X =i} = Zfij = ;i =0, 1 —1
J

PrOb{Y:j}:Zfijzl/j7j:0,"',J—1

Given two marginal distribution, x for X and v for Y, a joint distribution f;; is said to be a coupling of 1 and v.

Example:

8.15. Coupling 149

Intermediate Quantitative Economics with Python

Consider the following bivariate example.

Prob{X =0} =1 —q = p,
Prob{X =1} =¢ =y,
Prob{Y =0} =1 —r =,
Prob{Y =1} =r =1,
where 0 <g<r<1
We construct two couplings.
The first coupling if our two marginal distributions is the joint distribution
. (1-q¢(1—r) Q=g
i q(1—r7) qr

To verify that it is a coupling, we check that

M1 =4q
v=01-q¢(1—-r)+(1—-rjg=1-r
p=r(l—q) +qr=r

A second coupling of our two marginal distributions is the joint distribution

£ = [(187“) r;q}

The verify that this is a coupling, note that

l—r+r—qg+qg=1

to=1-—4q
M1 =4q
vg=1—r
vy=7

Thus, our two proposed joint distributions have the same marginal distributions.
But the joint distributions differ.

Thus, multiple joint distributions [f;;] can have the same marginals.

Remark:

o Couplings are important in optimal transport problems and in Markov processes. Please see this lecture about
optimal transport

8.16 Copula Functions

Suppose that X, X,, ..., X,, are N random variables and that
« their marginal distributions are F) (z,), F5(z5), ..., Fx (2), and

o their joint distribution is H(x, , ..., Ty)

150 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

Then there exists a copula function C|(-) that verifies
H(wy, @9, ..., ay) = C(Fy(2y), Fy(xs), ..., Fy(ay))-
We can obtain
Cluy, tig, oo u,) = HIFT (ug), Fy Hug), oo, Fyt (uy)]

In a reverse direction of logic, given univariate marginal distributions F(z,), Fy(xy),..., Fy(zy) and a
copula function C(-), the function H(xy,xq,...,zx5) = C(Fi(z1), Fy(zs),...,Fy(zy)) is a coupling of
Fy(zq), Fy(@g), -, Fy(zy).

Thus, for given marginal distributions, we can use a copula function to determine a joint distribution when the associated
univariate random variables are not independent.

Copula functions are often used to characterize dependence of random variables.
Discrete marginal distribution
As mentioned above, for two given marginal distributions there can be more than one coupling.

For example, consider two random variables X, Y with distributions

Prob(X = 0) = 0.6,
Prob(X =1) = 0.4,
Prob(Y = 0) = 0.3,
Prob(Y =1) = 0.7,

For these two random variables there can be more than one coupling.

Let’s first generate X and Y.

define parameters
mu = np.array([0.6, 0.4])
nu = np.array([0.3, 0.71])

number of draws
draws = 1_000_000

H

generate draws from uniform distribution
= np.random.rand (draws)

'O

generate draws of X and Y via uniform distribution

= np.ones (draws)

= np.ones (draws)

<= mul[0]] = O

> mu[0]] =1
]
]

el

<= nu[0]] =0
p > nul0] =1

KOKROX X KX s
e}

oo Josy

calculate parameters from draws
gq_hat = sum(x[x == 1])/draws
r_hat = sum(yl[y == 1])/draws

print output
print ("distribution for x")
xmtb = pt.PrettyTable ()
xmtb.field_names = ['x_value', 'x_prob']
(continues on next page)

8.16. Copula Functions 151

Intermediate Quantitative Economics with Python

(continued from previous page)

xmtb.add_row ([0, 1-g_hat])
xmtb.add_row([1, g_hat])
print (xmtb)

print ("distribution for y")

ymtb = pt.PrettyTable ()

ymtb.field names = ['y_value', 'y_prob']
ymtb.add_row ([0, 1-r_hat])
ymtb.add_row ([1, r_hat])

print (ymtb)

distribution for x

e fom +
| x_value | X_prob |
o o +
| 0 | 0.6008910000000001 |
| 1 \ 0.399109 |
o o +
distribution for y

o o +

| y_value | y_prob |
fom——————— Fom———————— +

| 0 | 0.300034 |

| 1 | 0.699966 |
fom——————— Fom———————— +

Let’s now take our two marginal distributions, one for X, the other for Y, and construct two distinct couplings.

For the first joint distribution:
Prob(X =4,Y =j) = f,;

where

0.18 0.42
il = { 0.12 0.28]

Let’s use Python to construct this joint distribution and then verify that its marginal distributions are what we want.
define parameters
f1 = np.array([[0.18, 0.42], [0.12, 0.28]])

f1_cum = np.cumsum(fl)

number of draws
drawsl = 1_000_000

generate draws from uniform distribution
p = np.random.rand(drawsl)

generate draws of first copuling via uniform distribution

cl = np.vstack ([np.ones (drawsl), np.ones(drawsl)])
X=0, Y=0

cl[0, p <= fl_cum[0]] = 0

cl[l, p <= fl_cum[0]] = 0

X=0, Y=1

cl[0, (p > fl1l_cum[0])*(p <= fl1_cum([1])] = 0

cl[l, (p > fl1_cum[0])*(p <= fl1l_cum[1])] =1

(continues on next page)

152 Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

XxX=1,

cl0, (p >

Y=0

cl[l, (p > fl1_cum[1])

X=1,

Y=1

cl[0, (p > fl_cum[2])
cl[l, (p > fl1_cum[2])

f1_cum[1]) * (p

calculate parameters from draws

£1_00 =
£f1_01
£1_10
f1_ 11 =

sum((cl[0, =]
sum((c1[0,]
sum((c1[0, =:]
sum((cl[O0,]

== 0)*(cl[1,

<= fl1_cum[2])] =1
*(p <= fl1_cum([2])] = 0

*(p <= fl_cum[3])] =1
*(p <= fl1l_cum([3])] =1

)
== 1)
)
)

print output of first joint distribution
print ("first joint distribution for cl")

cl_mtb

cl_mtb.
cl _mtb.
cl_mtb.
cl_mtb.
cl_mtb.
print (c

field_names =
add_row ([0,
add_row ([0,
add_row ([1,
add_row ([1,
1_mtb)

I4

’

I4

= O = O

4

pt.PrettyTable ()

['cl_x_value',
£1_00])
£f1_01]
£1_10]

1

)
)
£1_111)

first joint distribution for cl

fomm - e fom———————— +
| cl_x _value | cl_y_value | cl_prob |
fomm e e fom +
| 0 \ 0 | 0.179868 |
| 0 \ 1 | 0.419407 |
| 1 | 0 | 0.120779
| 1 \ 1 | 0.279946
o o o +
calculate parameters from draws
cl_g_hat = sum(cl[0, :] == 1)/drawsl
cl_r_hat = sum(cl[1l, :] == 1)/drawsl
print output
print ("marginal distribution for x")
cl_x_mtb = pt.PrettyTable()
cl_x _mtb.field_names = ['cl_x_value', 'cl_x_prob']
cl_x mtb.add_row ([0, 1-cl_g_hat])
cl_x mtb.add_row([1l, cl_g hat])
print (cl_x_mtb)
print ("marginal distribution for y")
cl_ymtb = pt.PrettyTable()
cl_ymtb.field _names = ['cl_y_value', 'cl_y_prob']

'cl_y_value',

cl_ymtb.add_row ([0, 1-cl_r_hat])
cl_ymtb.add_row([1l, cl_r_hat])

print (c

1_ymtb)

marginal distribution for x
fom fom +
| cl_x _value | cl_x_prob |

) /drawsl
) /drawsl
) /drawsl
) /drawsl

'cl_prob']

(continued from previous page)

(continues on next page)

8.16. Co

pula Functions

153

Intermediate Quantitative Economics with Python

Fom e fom e +
| 0 | 0.599275 |
| 1 | 0.400725 |
fom e fom e +
marginal distribution for y
fom o +
| cl_y_value | cl_y_prob |
fommmmm—————— R +
| 0 | 0.300647 |
| 1 | 0.699353 |
fommmmm Fomm +

(continued from previous page)

Now, let’s construct another joint distribution that is also a coupling of X and Y

1= |

define parameters
£2 np.array ([[0.3, 0.3],
£f2_cum np.cumsum (£2)

[0, 0.411)

number of draws
draws2 1_000_000

generate draws from uniform distribution
P np.random.rand (draws2)

0.3 0.3
0

|

0.4

generate draws of first coupling via uniform distribution

c2 = np.vstack ([np.ones (draws2), np.ones (draws2)])
X=0, Y=0

c2[0, p <= f2_cum[0]] = O

c2[1l, p <= f2_cum[0]] = O

X=0, Y=1

c2[0, (p > f2_cum[0])*(p <= f2_cum([1])] = 0

c2[1l, (p > f2_cum[0])*(p <= f2_cum[1])] =1

X=1, Y=0

c2[0, (p > f2_cum[1])*(p <= f2_cum[2])] = 1

c2[l, (p > f2_cum[1l])*(p <= f2_cum([2])] = 0

X=1, Y=1

c2[0, (p > f2_cum[2])*(p <= f2_cum[3])] = 1

c2[1l, (p > f2_cum[2])*(p <= f2_cum[3])] =1

calculate parameters from draws

£f2_00 = sum((c2[0, :] == 0)*(c2[1,] == 0))/draws2
f2_01 = sum((c2[0, :] == 0)*(c2[1, :] == 1))/draws2
£f2_10 = sum((c2[0, :] == 1)*(c2[1, :] == 0))/draws2
f2_11 = sum((c2[0, :] == 1)*(c2[1,] == 1)) /draws2

print output of second joint distribution
print ("first joint distribution for c2")

c2_mtb = pt.PrettyTable ()
c2_mtb.field_names = ['c2_x_value',
c2_mtb.add_row ([0, 0, £2_00])
c2_mtb.add_row ([0, 1, £2_011)
c2_mtb.add_row([1, 0, f2_10])
c2_mtb.add_row([1, 1, f2_11])

print (c2_mtb)

'c2_y_value',

'c2_prob']

154

Chapter 8. Elementary Probability with Matrices

Intermediate Quantitative Economics with Python

first joint distribution for c2

fom o fom +
| c2_x_value | c2_y_value | c2_prob |
fom o ——— fom +
| 0 | 0 | 0.300396
0 \ 1	0.300677	
1	0	0.0
1 \ 1	0.398927	
fommmmm fommmm fommm +
calculate parameters from draws
c2_g_hat = sum(c2[0, :] == 1)/draws2
c2_r_hat = sum(c2[1, :] == 1)/draws2
print output
print ("marginal distribution for x")
c2_x_mtb = pt.PrettyTable()
c2_x_mtb.field_names = ['c2_x_value', 'c2_x_prob']

c2_x_mtb.add_row ([0, 1-c2_g hat])
c2_x_mtb.add_row([1l, c2_g _hat])

print (c2_x_mtb)

print ("marginal distribution for y")

c2_ymtb = pt.PrettyTable()

c2_ymtb.field_names = ['c2_y_value', 'c2_y_prob']
c2_ymtb.add_row ([0, 1-c2_r_hat])

c2_ymtb.add_row([1l, c2_r_hat])

print (c2_ymtb)

marginal distribution for x

0.601073
0.398927

\
+
| 0 | 0.300396
| 0.699604 |
+

So they are both couplings of X and Y.

We have verified that both joint distributions, ¢; and c,, have identical marginal distributions of X and Y, respectively.

8.16. Copula Functions

155

Intermediate Quantitative Economics with Python

156 Chapter 8. Elementary Probability with Matrices

CHAPTER
NINE

SOME PROBABILITY DISTRIBUTIONS

This lecture is a supplement to this lecture on statistics with matrices.
It describes some popular distributions and uses Python to sample from them.

It also describes a way to sample from an arbitrary probability distribution that you make up by transforming a sample
from a uniform probability distribution.

In addition to what’s in Anaconda, this lecture will need the following libraries:

'pip install prettytable

As usual, we'll start with some imports

import numpy as np

import matplotlib.pyplot as plt

import prettytable as pt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib_inline.backend_inline import set_matplotlib_formats
set_matplotlib_formats('retina')

9.1 Some Discrete Probability Distributions

Let’s write some Python code to compute means and variances of some univariate random variables.
We'll use our code to
« compute population means and variances from the probability distribution
« generate a sample of N independently and identically distributed draws and compute sample means and variances

« compare population and sample means and variances

9.2 Geometric distribution

A discrete geometric distribution has probability mass function
Prob(X =k) = (1 —p)k1p,k=1,2,..., pe(0,1)

where k = 1, 2, ... is the number of trials before the first success.

157

Intermediate Quantitative Economics with Python

The mean and variance of this one-parameter probability distribution are

Let’s use Python draw observations from the distribution and compare the sample mean and variance with the theoretical
results.

specify parameters
p, n = 0.3, 1_000_000

draw observations from the distribution
x = np.random.geometric(p, n)

compute sample mean and variance

p_hat = np.mean (x)
02_hat = np.var (x)
print ("The sample mean is: ", p_hat, "\nThe sample variance is: ", o¢2_hat)

compare with theoretical results
print ("\nThe population mean is: ", 1/p)
print ("The population variance is: ", (1-p)/(p**2))

The sample mean is: 3.331017
The sample variance is: 7.7493507457109985

The population mean is: 3.3333333333333335
The population variance is: 7.777777777777778

9.3 Pascal (negative binomial) distribution

Consider a sequence of independent Bernoulli trials.

Let p be the probability of success.

Let X be a random variable that represents the number of failures before we get r successes.
Its distribution is

X ~ NB(r,p)

Prob(X = k;7,p) = [k ji; 1] pr(1 _p)k

Here, we choose from among k + r — 1 possible outcomes because the last draw is by definition a success.

We compute the mean and variance to be

k(1 —
V(X) = (p2 p)

158 Chapter 9. Some Probability Distributions

Intermediate Quantitative Economics with Python

specify parameters
r, p, n =10, 0.3, 1_000_000

draw observations from the distribution
x = np.random.negative_binomial (r, p, n)

compute sample mean and variance

p_hat = np.mean (x)

02_hat = np.var (x)

print ("The sample mean is: ", p_hat, "\nThe sample variance is: ", o¢2_hat)
print ("\nThe population mean is: ", r* (1-p)/p)

print ("The population variance is: ", r*(l-p)/p**2)

The sample mean is: 23.316091
The sample variance 1is: 77.58545147971897

The population mean is: 23.333333333333336
The population variance is: 77.77777777777779

9.4 Newcomb-Benford distribution

The Newcomb-Benford law fits many data sets, e.g., reports of incomes to tax authorities, in which the leading digit is
more likely to be small than large.

See https://en.wikipedia.org/wiki/Benford’s_law

A Benford probability distribution is

1
Prob{X = d} = log,,(d + 1) —log,,(d) = log, (1 + E)

where d € {1,2,---,9} can be thought of as a first digit in a sequence of digits.

This is a well defined discrete distribution since we can verify that probabilities are nonnegative and sum to 1.

1 2 1
log, (1 + E) >0, z:log10 (1 + E) =1
d=1

The mean and variance of a Benford distribution are

9
1
EX] = 1 1+ — | =~ 3.4402
[X] ;dng(er) 3.440
! 2 1
VIX] =) (d—E[X]) log,, <1+E> ~ 6.0565
d=1

We verify the above and compute the mean and variance using numpy.

Benford_pmf = np.array([np.logl0(1+1/d) for d in range(1,10)])
k = np.arange (1, 10)

mean
mean = k @ Benford pmf

(continues on next page)

9.4. Newcomb-Benford distribution 159

https://en.wikipedia.org/wiki/Benford%27s_law

Intermediate Quantitative Economics with Python

(continued from previous page)
variance
var = ((k — mean) ** 2) @ Benford pmf

verify sum to 1

print (np.sum(Benford_pmf))
print (mean)

print (var)

0.9999999999999999
3.4402369671232065
6.056512631375667

plot distribution

plt.plot (range(1,10), Benford_pmf, 'o'")
plt.title('Benford\'s distribution')
plt.show ()

Benford's distribution

0.307 @

0.25 A

0.20 A

0.15 A

0.10 - °

0.05 A ° °

Now let’s turn to some continuous random variables.

160 Chapter 9. Some Probability Distributions

Intermediate Quantitative Economics with Python

9.5 Univariate Gaussian distribution

We write

to indicate the probability distribution

In the below example, we set 4 = 0,0 = 0.1.

specify parameters
p, o =0, 0.1

specify number of draws

n = 1_000_000

X ~ N(u,0%)
1 1
f(z|u,o?) = ezl
(@fu,0%) = —o—5

draw observations from the distribution

b

= np.random.normal (1,

n)

compute sample mean and variance

p_hat = np.mean (x)
o_hat = np.std(x)

print ("The sample mean is:

n

4

p_hat)

print ("The sample standard deviation is: ", o_hat)

The sample mean is:
The sample standard deviation is:

compare
print (p—p_hat < 1le-3)
print (oc—-o_hat < 1e-3)

True
True

9.6 Uniform Distribution

The population mean and variance are

-8.064961597055681e-05
0.09998645966197071

X ~ Ula,]

f(:v):{blg’ asrsb

, otherwise

9.5. Univariate Gaussian distribution

161

Intermediate Quantitative Economics with Python

specify parameters
a, b =10, 20

specify number of draws
n = 1_000_000

draw observations from the distribution
x = a + (b—-a)*np.random.rand(n)

compute sample mean and variance

p_hat = np.mean (x)

02_hat = np.var (x)

print ("The sample mean is: ", p_hat, "\nThe sample variance is: ", o¢2_hat)
print ("\nThe population mean is: ", (a+b)/2)

print ("The population variance is: ", (b-a)**2/12)

The sample mean is: 15.001392110703941
The sample variance is: 8.331572017347133

The population mean is: 15.0
The population variance is: 8.333333333333334

9.7 A Mixed Discrete-Continuous Distribution

We'll motivate this example with a little story.
Suppose that to apply for a job you take an interview and either pass or fail it.

You have 5% chance to pass an interview and you know your salary will uniformly distributed in the interval 300~400 a
day only if you pass.

We can describe your daily salary as a discrete-continuous variable with the following probabilities:

P(X =0)=0.95

400
P(300 < X < 400) = (z)dz = 0.05
300
f(x) = 0.0005

Let’s start by generating a random sample and computing sample moments.

x = np.random.rand(1_000_000)

x[x > 0.95] = 100*x[x > 0.95]+300

x[x > 0.95] = 100*np.random.rand(len(x[x > 0.95]))+300
x[x <= 0.95] =0

p_hat = np.mean (x)
02_hat = np.var (x)

print ("The sample mean is: ", p_hat, "\nThe sample variance is: ", o02_hat)

The sample mean is: 17.43929471212604
The sample variance is: 5838.994590435591

162 Chapter 9. Some Probability Distributions

Intermediate Quantitative Economics with Python

The analytical mean and variance can be computed:

400

= /300 xf(x)dx

400

= 0.0005 / xdx
300
400

1
= 0.0005 x 51’2

300

400
02 =0.95x (0—17.5)% + / (x —17.5)f(z)dx
300
400

=0.95 x 17.5% + 0.0005/ (x —17.5)2dx
300
400

1
= 0.95 x 17.5” + 0.0005 x o (x —17.5)°

300

mean = 0.0005*0.5* (400**2 — 300**2)
var = 0.95*17.5*%*2+0.0005/3* ((400-17.5) **3-(300-17.5) **3)

print ("mean: ", mean)
print ("variance: ", wvar)
mean: 17.5

variance: 5860.416666666666

9.8 Drawing a Random Number from a Particular Distribution

Suppose we have at our disposal a pseudo random number that draws a uniform random variable, i.e., one with probability
distribution

I-1

3

Prob{X =i} = % i=0,..

How can we transform X to get a random variable X for which Prob{X =i} = f;, ¢=0,...,I — 1, where f; is an
arbitary discrete probability distributiononz = 0,1, ..., —1?
The key tool is the inverse of a cumulative distribution function (CDF).
Observe that the CDF of a distribution is monotone and non-decreasing, taking values between 0 and 1.
We can draw a sample of a random variable X with a known CDF as follows:

o draw a random variable u from a uniform distribution on [0, 1]

« pass the sample value of v into the “inverse” target CDF for X

o X has the target CDF

Thus, knowing the “inverse” CDF of a distribution is enough to simulate from this distribution.

© Note

The “inverse” CDF needs to exist for this method to work.

9.8. Drawing a Random Number from a Particular Distribution 163

Intermediate Quantitative Economics with Python

The inverse CDF is
Flluy=inf{fzr eR: Fz) >u} (0<u<l)
Here we use infimum because a CDF is a non-decreasing and right-continuous function.
Thus, suppose that
o U is a uniform random variable U € [0, 1]
» We want to sample a random variable X whose CDF is F.

It turns out that if we use draw uniform random numbers U and then compute X from
X =F1U),

then X is a random variable with CDF F'y(z) = F(x) = Prob{X < z}.

We'll verify this in the special case in which F' is continuous and bijective so that its inverse function exists and can be
denoted by F—1.

Note that
Fy (x) =Prob{X < z}
=Prob{F 1 (U) <z}
=Prob{U < F (x)}
= F ()

where the last equality occurs because U is distributed uniformly on [0, 1] while F'(x) is a constant given x that also lies
on [0, 1].

Let’s use numpy to compute some examples.
Example: A continuous geometric (exponential) distribution
Let X follow a geometric distribution, with parameter A > 0.

Its density function is

Its CDF is

Let U follow a uniform distribution on [0, 1].
X is a random variable such that U = F(X).
The distribution X can be deduced from
U=FX)=1—e?X

— — U = e_)\X
= log(1-U)=-)\X
1-0)
— X =
-\
Let’s draw u from U[0, 1] and calculate 2z = W‘

We'll check whether X seems to follow a continuous geometric (exponential) distribution.

Let’s check with numpy.

164 Chapter 9. Some Probability Distributions

Intermediate Quantitative Economics with Python

n, A =1.000_000, 0.3

S

draw uniform numbers
= np.random.rand (n)

o

transform
= —np.log(l-u) /A

w

draw geometric distributions
_g = np.random.exponential (1 / A, n)

b

plot and compare
plt.hist (x, bins=100, density=True)
plt.show ()

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

0.00 -

0 10 20 30 40 50

plt.hist (x_g, bins=100, density=True, alpha=0.6)
plt.show ()

9.8. Drawing a Random Number from a Particular Distribution 165

Intermediate Quantitative Economics with Python

0.25 A

0.20 A

0.15 A

0.10 A

0.05 A

0.00 I I 1 1 T T

Geometric distribution

Let X distributed geometrically, that is

Prob(X =i) = (1 —M)X, A€ (0,1), i=0,1,..
Prob(X =14)=1<¢=(1—A AN=——7=1
; rob(X = i) (); T

Its CDF is given by
i

Prob(X <i) = (1—X)) X

= (=N
=1—)\i+1
= F(X)=F,

7

Again, let U follow a uniform distribution and we want to find X such that (X) = U.

Let’s deduce the distribution of X from
U=F(X)=1—Avt!

10 = xwt!
log(1 —U7) = (z + 1) log A
log(1—0)
e\ M) 1
log A v
log(1 —) 1—g
log A

166 Chapter 9. Some Probability Distributions

Intermediate Quantitative Economics with Python

However, U = F~1(X) may not be an integer for any = > 0.
So let

~

log(1—"U)

= —1
z=1 log A]

where [.] is the ceiling function.
Thus z is the smallest integer such that the discrete geometric CDF is greater than or equal to U.

We can verify that x is indeed geometrically distributed by the following numpy program.

© Note

The exponential distribution is the continuous analog of geometric distribution.

n, A =1 000_000, 0.8

S

draw uniform numbers
= np.random.rand (n)

o

S

transform
= np.ceil (np.log(l-u)/np.log(A) — 1)

w

draw geometric distributions
X_g = np.random.geometric (1-A, n)

plot and compare
plt.hist (x, bins=150, density=True)
plt.show ()

9.8. Drawing a Random Number from a Particular Distribution

167

Intermediate Quantitative Economics with Python

0.5 -
0.4 -
0.3 -
0.2 -

0.1 4

0.0 |“‘||IIII|II|-..
10 20

30 40 50 60

np.random.geometric (1-A, n).max()
np.int64 (64)

np.log(0.4) /np.log(0.3)
np.float64(0.7610560044063083)

plt.hist (x_g, bins=150, density=True, alpha=0.56)
plt.show ()

168 Chapter 9. Some Probability Distributions

Intermediate Quantitative Economics with Python

0.5 A

0.4

0.3 1

0.2

0.1 4

0.0

9.8. Drawing a Random Number from a Particular Distribution 169

Intermediate Quantitative Economics with Python

170 Chapter 9. Some Probability Distributions

CHAPTER
TEN

LLN AND CLT

Contents

e LLN and CLT
— Overview
- Relationships
- LLN
- CLT

— Exercises

10.1 Overview

This lecture illustrates two of the most important theorems of probability and statistics: The law of large numbers (LLN)
and the central limit theorem (CLT).

These beautiful theorems lie behind many of the most fundamental results in econometrics and quantitative economic
modeling.

The lecture is based around simulations that show the LLN and CLT in action.
We also demonstrate how the LLN and CLT break down when the assumptions they are based on do not hold.
In addition, we examine several useful extensions of the classical theorems, such as
¢ The delta method, for smooth functions of random variables, and
« the multivariate case.
Some of these extensions are presented as exercises.

We'll need the following imports:

import matplotlib.pyplot as plt

import random

import numpy as np

from scipy.stats import t, beta, lognorm, expon, gamma, uniform
from scipy.stats import gaussian_kde, poisson, binom, norm, chi?2
from mpl_toolkits.mplot3d import Axes3D

(continues on next page)

171

Intermediate Quantitative Economics with Python

(continued from previous page)

from matplotlib.collections import PolyCollection
from scipy.linalg import inv, sgrtm

10.2 Relationships

The CLT refines the LLN.
The LLN gives conditions under which sample moments converge to population moments as sample size increases.

The CLT provides information about the rate at which sample moments converge to population moments as sample size
increases.

10.3 LLN

We begin with the law of large numbers, which tells us when sample averages will converge to their population means.

10.3.1 The Classical LLN

The classical law of large numbers concerns independent and identically distributed (IID) random variables.
Here is the strongest version of the classical LLN, known as Kolmogorov’s strong law.
Let X, ..., X,, be independent and identically distributed scalar random variables, with common distribution F'.

When it exists, let 1« denote the common mean of this sample:
wi=EX = /xF(dJ:)
In addition, let

X, =

n
PR
i=1

3=

Kolmogorov’s strong law states that, if E|X]| is finite, then
P{X, - pasn— oo} =1 (10.1)

‘What does this last expression mean?

Let’s think about it from a simulation perspective, imagining for a moment that our computer can generate perfect random
samples (which of course it can’t).

Let’s also imagine that we can generate infinite sequences so that the statement X,, — 1 can be evaluated.

In this setting, (10.1) should be interpreted as meaning that the probability of the computer producing a sequence where
X, — p fails to occur is zero.

172 Chapter 10. LLN and CLT

https://en.wikipedia.org/wiki/Pseudorandom_number_generator

Intermediate Quantitative Economics with Python

10.3.2 Proof

The proof of Kolmogorov’s strong law is nontrivial — see, for example, theorem 8.3.5 of [Dudley, 2002].

On the other hand, we can prove a weaker version of the LLN very easily and still get most of the intuition.

The version we prove is as follows: If X, ..., X,, is IID with EX 3 < o0, then, for any € > 0, we have
P{IX,—ul>e =0 as n—oo (10.2)

(This version is weaker because we claim only convergence in probability rather than almost sure convergence, and assume

a finite second moment)

To see that this is so, fix € > 0, and let 2 be the variance of each X;.

Recall the Chebyshev inequality, which tells us that

% 2
P{I%, —pl> o) < (a2l (10.3)

Now observe that

1 &
i=1 j=1
1 & 9
=EZ;[E(XZ-—M)
_
o n

Here the crucial step is at the third equality, which follows from independence.
Independence means that if i # j, then the covariance term E(X; — 11)(X; —) drops out.
As a result, n?2 — n terms vanish, leading us to a final expression that goes to zero in n.

Combining our last result with (10.3), we come to the estimate

P{X,—pl>e <— (10.4)

The claim in (10.2) is now clear.

Of course, if the sequence X1, ..., X, is correlated, then the cross-product terms (X, — 1) (X; — 1) are not necessarily
zero.

While this doesn’t mean that the same line of argument is impossible, it does mean that if we want a similar result then
the covariances should be “almost zero” for “most” of these terms.

In a long sequence, this would be true if, for example, E(X, — 1) (X ; — 1) approached zero when the difference between
1 and j became large.

In other words, the LLN can still work if the sequence X, ..., X,, has a kind of “asymptotic independence”, in the sense
that correlation falls to zero as variables become further apart in the sequence.

This idea is very important in time series analysis, and we’ll come across it again soon enough.

10.3. LLN 173

https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_probability
https://en.wikipedia.org/wiki/Convergence_of_random_variables#Almost_sure_convergence
https://en.wikipedia.org/wiki/Chebyshev%27s_inequality

Intermediate Quantitative Economics with Python

10.3.3 lllustration

Let’s now illustrate the classical IID law of large numbers using simulation.

In particular, we aim to generate some sequences of IID random variables and plot the evolution of X », a8 T increases.
Below is a figure that does just this (as usual, you can click on it to expand it).

It shows IID observations from three different distributions and plots X, against n in each case.

The dots represent the underlying observations X, for i =1, ..., 100.

In each of the three cases, convergence of X, to x occurs as predicted
n = 100

Arbitrary collection of distributions
distributions = {"student's t with 10 degrees of freedom": t(10),
"B(2, 2)": beta(z2, 2),
"lognormal LN (O, 1/2)": lognorm(0.5),
"y (5, 1/2)": gamma (5, scale=2),
"poisson (4)": poisson(4),
"exponential with A = 1": expon (1)}

Create a figure and some axes
num_plots = 3

fig, axes = plt.subplots (num_plots, 1, figsize=(10, 20))

Set some plotting parameters to improve layout

bbox = (0., 1.02, 1., .102)
legend_args = {'ncol': 2,
'bbox_to_anchor': bbox,
Vlee"s 3,
'mode': 'expand'}

plt.subplots_adjust (hspace=0.5)

for ax in axes:
Choose a randomly selected distribution
name = random.choice(list (distributions.keys()))
distribution = distributions.pop (name)

Generate n draws from the distribution
data = distribution.rvs(n)

Compute sample mean at each n

sample_mean = np.empty (n)
for i in range(n):
sample_mean[i] = np.mean(datal[:i+1])
Plot
ax.plot (list (range(n)), data, 'o', color='grey', alpha=0.5)
axlabel = r'S\bar nS$ for $X_ 1 \sim$' + name

ax.plot (list (range (n)), sample_mean, 'g-', 1lw=3, alpha=0.6, label=axlabel)
m = distribution.mean ()

ax.plot (list (range(n)), [m] * n, 'k——', 1lw=1.5, label=r'Sμ')
ax.vlines (list (range(n)), m, data, 1lw=0.2)

ax.legend(**legend_args, fontsize=12)

plt.show ()

174 Chapter 10. LLN and CLT

Intermediate Quantitative Economics with Python

X, for X; ~ lognormal LN(0, 1/2) -——pu
3.5
3.0
2.5
2.0
1.5
— o AT N Sy e e —— o - —
104
0.5 1
0 20 a0 50 80 100
X, for X; ~ (5, 1/2) —
25
20
15
L
1o I LI i 1 ey e I Y o PR [N iy g . It et 1 4
5
0 20 a0 60 80 100
X, for X; ~ exponential with A = 1 -—— u
10
84
64
ad
- - — — _
2 - —:—;——'——‘-—“-—-- ———
’
0 20 a0 60 80 100
10.3. LLN 175

Intermediate Quantitative Economics with Python

The three distributions are chosen at random from a selection stored in the dictionary distributions.

104 CLT

Next, we turn to the central limit theorem, which tells us about the distribution of the deviation between sample averages
and population means.

10.4.1 Statement of the Theorem

The central limit theorem is one of the most remarkable results in all of mathematics.
In the classical IID setting, it tells us the following:

If the sequence X1, ..., X,, is IID, with common mean / and common variance o € (0, 00), then

\/H(Xn—u)iN(O,oz) as n— oo (10.5)

d . e
Here — N (0, 0?) indicates convergence in distribution to a centered (i.e, zero mean) normal with standard deviation o.

10.4.2 Intuition

The striking implication of the CLT is that for any distribution with finite second moment, the simple operation of adding
independent copies always leads to a Gaussian curve.

A relatively simple proof of the central limit theorem can be obtained by working with characteristic functions (see, e.g.,
theorem 9.5.6 of [Dudley, 2002]).

The proof is elegant but almost anticlimactic, and it provides surprisingly little intuition.

In fact, all of the proofs of the CLT that we know are similar in this respect.

Why does adding independent copies produce a bell-shaped distribution?

Part of the answer can be obtained by investigating the addition of independent Bernoulli random variables.
In particular, let X, be binary, with P{X, = 0} = P{X, = 1} = 0.5, and let X, ..., X, be independent.
Think of X, = 1 as a “success”, so that Y,, = Z?:1 X is the number of successes in 7 trials.

The next figure plots the probability mass function of Y, forn =1,2,4,8

fig, axes = plt.subplots (2, 2, figsize=(10, 6))
plt.subplots_adjust (hspace=0.4)

axes = axes.flatten ()

ns = [1, 2, 4, 8]

dom = list (range (9))

for ax, n in zip(axes, ns):
b = binom(n, 0.5)
ax.bar (dom, b.pmf (dom), alpha=0.6, align='center')
ax.set (xlim=(-0.5, 8.5), ylim=(0, 0.55),
xticks=1list (range(9)), yticks=(0, 0.2, 0.4),
title=f'$n = {n}$")

plt.show ()

176 Chapter 10. LLN and CLT

https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_distribution

Intermediate Quantitative Economics with Python

When n = 1, the distribution is flat — one success or no successes have the same probability.
When n = 2 we can either have 0, 1 or 2 successes.
Notice the peak in probability mass at the mid-point k = 1.

The reason is that there are more ways to get 1 success (“fail then succeed” or “succeed then fail”) than to get zero or two
successes.

Moreover, the two trials are independent, so the outcomes “fail then succeed” and “succeed then fail” are just as likely as
the outcomes “fail then fail” and “succeed then succeed”.

(If there was positive correlation, say, then “succeed then fail” would be less likely than “succeed then succeed”)

Here, already we have the essence of the CLT: addition under independence leads probability mass to pile up in the
middle and thin out at the tails.

For n = 4 and n = 8 we again get a peak at the “middle” value (halfway between the minimum and the maximum
possible value).

The intuition is the same — there are simply more ways to get these middle outcomes.
If we continue, the bell-shaped curve becomes even more pronounced.

We are witnessing the binomial approximation of the normal distribution.

10.4. CLT 177

https://en.wikipedia.org/wiki/De_Moivre%E2%80%93Laplace_theorem

Intermediate Quantitative Economics with Python

10.4.3 Simulation 1

Since the CLT seems almost magical, running simulations that verify its implications is one good way to build intuition.

To this end, we now perform the following simulation
1. Choose an arbitrary distribution F for the underlying observations X;.

2. Generate independent draws of Y,, := \/n(X,, —).

3. Use these draws to compute some measure of their distribution — such as a histogram.

4. Compare the latter to N (0, o2).

Here’s some code that does exactly this for the exponential distribution F'(z) = 1 — e™**.

(Please experiment with other choices of F', but remember that, to conform with the conditions of the CLT, the distri-

bution must have a finite second moment.)

Set parameters

n = 250 # Choice of n

k = 100000 # Number of draws of Y_n
distribution = expon(2) # Exponential distribution, A = 1/2
B, s = distribution.mean(), distribution.std()

Draw underlying RVs. Each row contains a draw of X 1,..,X_n
data = distribution.rvs((k, n))

Compute mean of each row, producing k draws of \bar X_n
sample_means = data.mean (axis=1)

Generate observations of Y _n

Y = np.sqgrt(n) * (sample_means — 1)

Plot

fig, ax = plt.subplots(figsize=(10, 6))

xmin, xmax = -3 * s, 3 * s

ax.set_xlim(xmin, xmax)

ax.hist (Y, bins=60, alpha=0.5, density=True)

xgrid = np.linspace (xmin, xmax, 200)

ax.plot (xgrid, norm.pdf (xgrid, scale=s), 'k-', 1lw=2, label=r'sSN
ax.legend()

plt.show ()

(0, \sigma~2)s"')

178

Chapter 10. LLN and CLT

Intermediate Quantitative Economics with Python

-3 -2 -1 0 1 2 3

Notice the absence of for loops — every operation is vectorized, meaning that the major calculations are all shifted to
highly optimized C code.

The fit to the normal density is already tight and can be further improved by increasing n.

You can also experiment with other specifications of F'.

10.4.4 Simulation 2

Our next simulation is somewhat like the first, except that we aim to track the distribution of Y;, := \/n(X,, — p1) as n
increases.

In the simulation, we’ll be working with random variables having 1 = 0.
Thus, when n = 1, we have Y; = X, so the first distribution is just the distribution of the underlying random variable.
For n = 2, the distribution of Y, is that of (X, 4+ X,)/+/2, and so on.

What we expect is that, regardless of the distribution of the underlying random variable, the distribution of Y,, will smooth
out into a bell-shaped curve.

The next figure shows this process for X; ~ f, where f was specified as the convex combination of three different beta
densities.

(Taking a convex combination is an easy way to produce an irregular shape for f.)

In the figure, the closest density is that of Y;, while the furthest is that of Y5
beta_dist = beta(2, 2)

def gen_x_draws (k) :

mrn

Returns a flat array containing k independent draws from the

distribution of X, the underlying random variable. This distribution
(continues on next page)

104. CLT 179

Intermediate Quantitative Economics with Python

(continued from previous page)

is itself a convex combination of three beta distributions.
mirrmn

bdraws = beta_dist.rvs((3, k))
Transform rows, so each represents a different distribution

bdraws [0, :] —= 0.5

bdraws[1, :] += 0.6

bdraws[2, :]1 —= 1.1

Set X[i1] = bdraws[j, 1], where j is a random draw from {0, 1, 2}
js = np.random.randint (0, 2, size=k)

X = bdraws[js, np.arange (k)]

Rescale, so that the random variable is zero mean
m, sigma = X.mean(), X.std()

return (X - m) / sigma

nmax = 5
reps = 100000
ns = list(range(l, nmax + 1))

Form a matrix Z such that each column is reps independent draws of X

Z = np.empty ((reps, nmax))
for i in range (nmax) :
Z[:, 1] = gen_x_draws (reps)

Take cumulative sum across columns
S = Z.cumsum(axis=1)

Multiply j-th column by sqgrt j

Y = (1 / np.sqgrt(ns)) * S

Plot
ax = plt.figure(figsize = (10, 6)) .add_subplot (projection='3d")

a, b=-3, 3
gs = 100
xs = np.linspace(a, b, gs)

Build verts

greys = np.linspace (0.3, 0.7, nmax)

verts []

for n in ns:
density = gaussian_kde(Y[:, n-11])
ys = density(xs)
verts.append(list (zip(xs, ys)))

poly = PolyCollection(verts, facecolors=[str(g) for g in greys])
poly.set_alpha(0.85)
ax.add_collection3d(poly, zs=ns, zdir='x")

ax.set (x1im3d= (1, nmax), xticks=(ns), ylabel='SY n$', zlabel='S$p(y_n)s$',
xlabel=("n"), yticks=((-3, 0, 3)), ylim3d=(a, b),
z1im3d=(0, 0.4), zticks=((0.2, 0.4)))
ax.invert_xaxis ()
Rotates the plot 30 deg on z axis and 45 deg on x axis
ax.view_init (30, 45)
plt.show ()

180 Chapter 10. LLN and CLT

Intermediate Quantitative Economics with Python

As expected, the distribution smooths out into a bell curve as n increases.
We leave you to investigate its contents if you wish to know more.

If you run the file from the ordinary IPython shell, the figure should pop up in a window that you can rotate with your
mouse, giving different views on the density sequence.

10.4.5 The Multivariate Case

The law of large numbers and central limit theorem work just as nicely in multidimensional settings.
To state the results, let’s recall some elementary facts about random vectors.

A random vector X is just a sequence of k random variables (X7, ..., X},).

Each realization of X is an element of R*.

A collection of random vectors X, ..., X, is called independent if, given any n vectors X, ... , x,, in R¥, we have
P{X; <xqy,...,X, <x,} =P{X; <xy} x- xP{X,, <x,}

(The vector inequality X < x means that X; < x; for j =1,..., k)
Let pu; := E[X,] forall j =1,... k.

10.4. CLT 181

Intermediate Quantitative Economics with Python

The expectation E[X] of X is defined to be the vector of expectations:

E[X] H1
E[X4] K

The variance-covariance matrix of random vector X is defined as
Var[X] = E[(X — j1)(X —)]

Expanding this out, we get

E[(Xy —p)(Xy —)] - E[(X — p) (X —)]
Var[X] = E[(X, — ”2.)(X1 — p1)] E[(X; — Nz?(Xk —)]
E[(Xy — p)(Xy —p)] - BU(X —) (X —)]

The j, k-th term is the scalar covariance between X ; and X

With this notation, we can proceed to the multivariate LLN and CLT.

Let Xy, ..., X,, be a sequence of independent and identically distributed random vectors, each one taking values in R*.
Let 1 be the vector E[X;], and let 3 be the variance-covariance matrix of X.

Interpreting vector addition and scalar multiplication in the usual way (i.e., pointwise), let

_ 1 &
X, = — X,
In this setting, the LLN tells us that
P{X, »pasn—oo} =1 (10.6)

Here X,, — u means that |X,, — u|| — 0, where | - | is the standard Euclidean norm.

The CLT tells us that, provided X is finite,

vn(X,, —p) 4 N(0,X) as n— oo (10.7)

10.5 Exercises

© Exercise 10.5.1
One very useful consequence of the central limit theorem is as follows.
Assume the conditions of the CLT as stated above.

If g: R — R is differentiable at p and ¢’ (u) # 0, then

Vafg(X,) — g(i)} > N(0,¢/()%02) as n— oo (10.8)

This theorem is used frequently in statistics to obtain the asymptotic distribution of estimators — many of which can
be expressed as functions of sample means.

(These kinds of results are often said to use the “delta method”.)

182 Chapter 10. LLN and CLT

Intermediate Quantitative Economics with Python

The proof is based on a Taylor expansion of g around the point p.
Taking the result as given, let the distribution F' of each X; be uniform on [0, /2] and let g(z) = sin(x).

Derive the asymptotic distribution of /n{g(X,,) —g(x)} and illustrate convergence in the same spirit as the program
discussed above.

What happens when you replace [0, 7/2] with [0, 7]?

What is the source of the problem?

© Solution

Here is one solution

mn

Illustrates the delta method, a consequence of the central limit theorem.

mrn

Set parameters

n = 250

replications = 100000

distribution = uniform(loc=0, scale=(np.pi / 2))
B, s = distribution.mean(), distribution.std()

g = np.sin
g_prime = np.cos

Generate obs of sqgrt{n} (g(X_n) - g(u))
data = distribution.rvs((replications, n))

sample_means = data.mean (axis=1) # Compute mean of each row
error_obs = np.sqgrt(n) * (g(sample_means) - g(p))
Plot

asymptotic_sd = g_prime(p) * s

fig, ax = plt.subplots(figsize=(10, 6))

xmin = -3 * g_prime(p) * s

xmax = —xmin

ax.set_xlim(xmin, xmax)

ax.hist (error_obs, bins=60, alpha=0.5, density=True)
xgrid = np.linspace (xmin, xmax, 200)

1b = r"$N(0, g' (\mu)”"2 \sigma”"2)s"

ax.plot (xgrid, norm.pdf (xgrid, scale=asymptotic_sd), 'k-', 1lw=2, label=1Db)
ax.legend()

plt.show ()

10.5. Exercises 183

Intermediate Quantitative Economics with Python

— N(0, g'(u)?0?)

—-0.75 —0.50 —-0.25 0.00 0.25 0.50 0.75

What happens when you replace [0, 7 /2] with [0, 7]?

In this case, the mean p of this distribution is 7r/2, and since g’ = cos, we have ¢’ (1) = 0.

L Hence the conditions of the delta theorem are not satisfied.

p
© Exercise 10.5.2

Here’s a result that’s often used in developing statistical tests, and is connected to the multivariate central limit theorem.
If you study econometric theory, you will see this result used again and again.
Assume the setting of the multivariate CLT discussed above, so that

1. X;,..., X, is a sequence of IID random vectors, each taking values in R¥.

2. p:= E[X;], and X is the variance-covariance matrix of X;.

3. The convergence

VX, —) 5 N,) (10.9)

is valid.

In a statistical setting, one often wants the right-hand side to be standard normal so that confidence intervals are
easily computed.

This normalization can be achieved on the basis of three observations.

First, if X is a random vector in R* and A is constant and & x k, then

Var[AX] = A Var[X]A’

184 Chapter 10. LLN and CLT

Intermediate Quantitative Economics with Python

. . . d . .
Second, by the continuous mapping theorem, if Z,, — Z in R* and A is constant and k x k, then

AZ, % AZ

Third, if S is a k x k symmetric positive definite matrix, then there exists a symmetric positive definite matrix Q,
called the inverse square root of S, such that

QsQ' =1

Here I is the k£ x k identity matrix.

Putting these things together, your first exercise is to show that if Q is the inverse square root of [, then

Z, = VnQ(X, — p) > Z ~ N(0,1)

n

Applying the continuous mapping theorem one more time tells us that
d
1Z,.1* — 1Z])*
Given the distribution of Z, we conclude that
= d
nQ(X,, — p)* = x*(k) (10.10)

where x?(k) is the chi-squared distribution with k degrees of freedom.
(Recall that k is the dimension of X;, the underlying random vectors.)

Your second exercise is to illustrate the convergence in (10.10) with a simulation.

Wi
X = (U, + W,)

In doing so, let

where
o each W, is an IID draw from the uniform distribution on [—1, 1].
o each Uj is an IID draw from the uniform distribution on [—2, 2].

o U, and W, are independent of each other.

Hint

1. scipy.linalg.sqgrtm(A) computes the square root of A. You still need to invert it.
2. You should be able to work out X from the preceding information.

© Solution

First we want to verify the claim that

ViQ(X,, — 1) 5 N(0,T)

This is straightforward given the facts presented in the exercise.

10.5. Exercises 185

https://en.wikipedia.org/wiki/Continuous_mapping_theorem
https://en.wikipedia.org/wiki/Square_root_of_a_matrix

Intermediate Quantitative Economics with Python

Let

Y, :=vn(X,, —u) and Y~ N(0,%)

n

By the multivariate CLT and the continuous mapping theorem, we have

d
QY, — QY
Since linear combinations of normal random variables are normal, the vector QY is also normal.

Its mean is clearly 0, and its variance-covariance matrix is
Var[QY] = QVar[Y]Q' = QXQ’ =1

. d L. .
In conclusion, QY,, — QY ~ N(0,I), which is what we aimed to show.
Now we turn to the simulation exercise.

Our solution is as follows
Set parameters

n = 250

replications = 50000

dw = uniform(loc=-1, scale=2) # Uniform(-1, 1)
du = uniform(loc=-2, scale=4) # Uniform (-2, 2)
sw, su = dw.std(), du.std()

vw, vu = Sw**2, su**2

L = ((vw, vw), (vw, vw + wvu))

Y = np.array ()

Compute 5"{-1/2}
Q = inv(sgrtm(Z))

Generate observations of the normalized sample mean
error_obs = np.empty((2, replications))
for i in range (replications):

Generate one sequence of bivariate shocks
X = np.empty ((2, n))
W dw.rvs (n)
U = du.rvs(n)
#
X

Construct the n observations of the random vector

[0, :] =W
X[1, :] =W+ U
Construct the i-th observation of Y_n
error_obs[:, i] = np.sqrt(n) * X.mean (axis=1)

Premultiply by Q and then take the squared norm
temp = Q @ error_obs

chisqg_obs np.sum(temp**2, axis=0)

Plot

fig, ax = plt.subplots(figsize=(10, 6))
xmax = 8

ax.set_x1im(0, xmax)

xgrid = np.linspace (0, xmax, 200)

1b = "Chi-squared with 2 degrees of freedom"

ax.plot (xgrid, chi2.pdf (xgrid, 2), 'k-', 1lw=2, label=1b)
ax.legend()

ax.hist (chisg_obs, bins=50, density=True)

plt.show ()

186 Chapter 10. LLN and CLT

Intermediate Quantitative Economics with Python

0.5 = Chi-squared with 2 degrees of freedom

10.5. Exercises 187

Intermediate Quantitative Economics with Python

188 Chapter 10. LLN and CLT

CHAPTER
ELEVEN

TWO MEANINGS OF PROBABILITY

11.1 Overview

This lecture illustrates two distinct interpretations of a probability distribution
« A frequentist interpretation as relative frequencies anticipated to occur in a large i.i.d. sample

« A Bayesian interpretation as a personal opinion (about a parameter or list of parameters) after seeing a collection
of observations

We recommend watching this video about hypothesis testing within the frequentist approach

https://youtu.be/8JIe_cz6qGA

After you watch that video, please watch the following video on the Bayesian approach to constructing coverage intervals

https://youtu.be/Pahyv9i_X2k

After you are familiar with the material in these videos, this lecture uses the Socratic method to to help consolidate your
understanding of the different questions that are answered by

« afrequentist confidence interval
« a Bayesian coverage interval
We do this by inviting you to write some Python code.

It would be especially useful if you tried doing this after each question that we pose for you, before proceeding to read
the rest of the lecture.

We provide our own answers as the lecture unfolds, but you’ll learn more if you try writing your own code before reading
and running ours.

Code for answering questions:

In addition to what’s in Anaconda, this lecture will deploy the following library:

pip install prettytable

To answer our coding questions, we’ll start with some imports

import numpy as np

import pandas as pd

import prettytable as pt

import matplotlib.pyplot as plt
from scipy.stats import binom
import scipy.stats as st

189

https://youtu.be/8JIe_cz6qGA
https://youtu.be/Pahyv9i_X2k

Intermediate Quantitative Economics with Python

Empowered with these Python tools, we’ll now explore the two meanings described above.

11.2 Frequentist Interpretation

Consider the following classic example.

The random variable X takes on possible values k£ = 0, 1, 2, ..., n with probabilties

!
Prob(X = k|§) = (kl(n”_k)') g1 — gy
where the fixed parameter 6 € (0, 1).
This is called the binomial distribution.
Here
« 6 is the probability that one toss of a coin will be a head, an outcome that we encode as Y = 1.
o 1 — 0 is the probability that one toss of the coin will be a tail, an outcome that we denote Y = 0.
o X is the total number of heads that came up after flipping the coin n times.
Consider the following experiment:
Take I independent sequences of n independent flips of the coin
Notice the repeated use of the adjective independent:

« we use it once to describe that we are drawing n independent times from a Bernoulli distribution with parameter
6 to arrive at one draw from a Binomial distribution with parameters 6, n.

« we use it again to describe that we are then drawing I sequences of n coin draws.
Let y! € {0, 1} be the realized value of Y on the hth flip during the ith sequence of flips.

Let ZZ:1 y: denote the total number of times heads come up during the ith sequence of n independent coin flips.

Let f}, record the fraction of samples of length n for which ZZ:l y}l =k:

number of samples of length n for which 22:1 yi =k
I

I _
=

The probability Prob(X = k|6) answers the following question:
o As I becomes large, in what fraction of I independent draws of n coin flips should we anticipate £ heads to occur?

As usual, a law of large numbers justifies this answer.

© Exercise 11.2.1

1. Please write a Python class to compute fé

2. Please use your code to compute f,g ,k =0, ...,n and compare them to Prob(X = k|f) for various values of
f,n and

3. With the Law of Large numbers in mind, use your code to say something

190 Chapter 11. Two Meanings of Probability

Intermediate Quantitative Economics with Python

p
© Solution

Here is one solution:
class frequentist:

def _ init_ (self, 6, n, I):

rr
initialization

parameters:

6 : probability that one toss of a coin will be a head with Y = 1

n : number of independent flips in each independent sequence of draws
I : number of independent sequence of draws

self.0, self.n, self.I =6, n, I

def binomial (self, k):
"!"'compute the theoretical probability for specific input k'''
6, n = self.0, self.n

self.k = k
self. = binom.pmf (k, n, 6)

o~

def draw(self):
'"'"'draw n independent flips for I independent sequences'''

8, n, I = self.B, self.n, self.I
sample = np.random.rand (I, n)

Y = (sample <= 0) * 1

self.Y =Y

def compute_fk(self, kk):
"!"'compute f_{k}"I for specific input k'''

Y, I = self.Y, self.I

K = np.sum(Y, 1)

f kI = np.sum(K == kk) / I
self.f_kI = f_kI

self.kk = kk

def compare (self):
"!"'compute and print the comparison'''

n = self.n
comp = pt.PrettyTable()
comp.field _names = ['k', 'Theoretical', 'Frequentist']
self.draw ()
for i in range(n):
self.binomial (i+1)
self.compute_fk(i+1)
comp.add_row([i+l, self.P, self.f_kI])

11.2. Frequentist Interpretation

191

Intermediate Quantitative Economics with Python

print (comp)
6, n, k, T = 0.7, 20, 10, 1_000_000

freq = frequentist (6, n, I)

freqg.compare ()

o o —— +
| k| Theoretical | Frequentist |
o e ——— +
1	1.6271660538000033e-09	0.0
2	3.606884752589999%9e-08	0.0
3	5.04963865362601e-07	le-06
4	5.007558331512455e-06	6e-06
5	3.7389768875293014e-05	4e-05
6	0.00021810698510587546	0.000224
7	0.001017832597160754	0.000966

| 8 | 0.003859281930901185 | 0.003794

| 9 | 0.012006654896137007 | 0.012004 |
| 10 | 0.030817080900085007 | 0.031014 |
| 11 | 0.06536956554563476 | 0.065523

| 12 | 0.11439673970486108 | 0.114632 |
| 13 | 0.1642619852172365 | 0.16443 |
| 14 | 0.19163898275344252 | 0.191081

| 15 | 0.17886305056987967 | 0.178395

16	0.1304209743738704	0.130877
17	0.07160367220526209	0.071558
18	0.027845872524268643	0.027887
19	0.006839337111223895	0.00676

| 20 | 0.0007979226629761189 | 0.000808 |
o e ——— +

From the table above, can you see the law of large numbers at work?

Let’s do some more calculations.
Comparison with different 0

Now we fix
n = 20,k = 10,1 = 1,000, 000
We'll vary 6 from 0.01 to 0.99 and plot outcomes against 6.

6_low, 6_high, npt = 0.01, 0.99, 50
thetas = np.linspace(6_low, 6_high, npt)
P = []
f_kI = []
for i in range (npt) :
freq = frequentist (thetas[i], n, I)
freg.binomial (k)
freqg.draw ()
freqg.compute_fk (k)
P.append(freq.P)
f kI.append(freqg.f_kI)

fig, ax = plt.subplots(figsize=(8, 6))
ax.grid()
(continues on next page)

192 Chapter 11. Two Meanings of Probability

Intermediate Quantitative Economics with Python

ax.plot (thetas, P, 'k-.', label='Theoretical')
ax.plot (thetas, f_kI, 'r—-', label='Fraction')
plt.title(r'Comparison with different θ',
plt.xlabel (r'θs', fontsize=15)

plt.ylabel ('Fraction', fontsize=15)
plt.tick_params (labelsize=13)

plt.legend()

plt.show ()

fontsize=16)

Comparison with different 6

(continued from previous page)

0.175 - P

0.150 1

Fraction
o
(]
~J
Ln
—
e

0.050 1

0.025 A1

0.000 -

—-= Theoretical
—=- Fraction

0.4 0.6

Comparison with different n
Now we fix § = 0.7,k = 10, I = 1,000, 000 and vary n from 1 to 100.

Then we'll plot outcomes.

n_low, n_high, nn =1, 100, 50

ns = np.linspace(n_low, n_high, nn, dtype='int')
P =[]

f_kI = []

for i in range (nn):
freq frequentist (6,
freg.binomial (k)
freg.draw ()
freq.compute_fk (k)
P.append (freqg.P)

I)

ns[i],

(continues on next page)

11.2. Frequentist Interpretation

193

Intermediate Quantitative Economics with Python

f kI.append(freq.f kI)

(continued from previous page)

fig, ax = plt.subplots(figsize=(8, 6))
ax.grid()

ax.plot(ns, P, 'k-.', label='Theoretical')
ax.plot (ns, f£_kI, 'r—-', label='Frequentist')

plt.title(r'Comparison with different n', fontsize=16)
plt.xlabel (r'n', fontsize=15)
plt.ylabel ('Fraction', fontsize=15)
plt.tick_params (labelsize=13)
plt.legend()
plt.show ()
Comparison with different n
== Theoretical
f\l === Frequentist
0.20 | 1
A
B
0.15 1 II 1,
[l
= |
o |
5 !
© 0.10 - [
—
L I ‘
[
||
0.05 - | ‘\
lo
[\
l \
0.00 4 —— —
0 20 40 60 80 100

Comparison with different /

Now we fix § = 0.7,n = 20, k = 10 and vary log([) from 2 to 7.

I_log_low,
log_Is = np.linspace(I_log_low,
log_1Is) .astype(int)

Is
P

f_kI

I_log_high, nI = 2,

np.power (10,
[]

(]

for i in range (nI):

freq frequentist (6,

n,

Is

6, 200
I_log_high, nI)

[i1)

(continues on next page)

194

Chapter 11. Two Meanings of Probability

Intermediate Quantitative Economics with Python

(continued from previous page)
freg.binomial (k)
freg.draw()
freq.compute_fk (k)
P.append (freqg.P)
f_kI.append(freqg.f_kI)

fig, ax = plt.subplots(figsize=(8, 6))

ax.grid()

ax.plot (Is, P, 'k-.', label='Theoretical')

ax.plot (Is, f_kI, 'r—-', label='Fraction')
plt.title(r'Comparison with different IS', fontsize=16)
plt.xlabel (r'I', fontsize=15)

plt.ylabel ('Fraction', fontsize=15)

plt.tick_params (labelsize=13)

plt.legend ()

plt.show ()

Comparison with different |

0.07 - —-= Theoretical
=== Fraction

0.06

o

o

L
I

Fraction
(]
o
B

0-03 7 i 'rhﬁ#‘*';_n%-‘.‘-d‘_-“"-—_—l-—'rw“ﬂ—'—--———

0.02

001 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
[le6

From the above graphs, we can see that /, the number of independent sequences, plays an important role.
When I becomes larger, the difference between theoretical probability and frequentist estimate becomes smaller.

Also, as long as [is large enough, changing 6 or n does not substantially change the accuracy of the observed fraction as
an approximation of 6.

The Law of Large Numbers is at work here.

11.2. Frequentist Interpretation 195

Intermediate Quantitative Economics with Python

For each draw of an independent sequence, Prob(X,; = k|6) is the same, so aggregating all draws forms an i.i.d sequence
of a binary random variable py, ;,i = 1,2, ...I, with a mean of Prob(X = £|¢) and a variance of

n - Prob(X = k|0) - (1 — Prob(X = k|f)).

So, by the LLN, the average of Pk,i converges to:

n!
Elpy, ;] = Prob(X = k|0) = (!> OF (1 — @)+

kl(n —k)

as I goes to infinity.

11.3 Bayesian Interpretation

We again use a binomial distribution.

But now we don’t regard 6 as being a fixed number.
Instead, we think of it as a random variable.

6 is described by a probability distribution.

But now this probability distribution means something different than a relative frequency that we can anticipate to occur
in a large i.i.d. sample.

Instead, the probability distribution of # is now a summary of our views about likely values of 6 either
« before we have seen any data at all, or
« before we have seen more data, after we have seen some data
Thus, suppose that, before seeing any data, you have a personal prior probability distribution saying that

a—1 _ pn\B-1

where B(a, 3) is a beta function , so that P(6) is a beta distribution with parameters «, (3.

© Exercise 11.3.1

a) Please write down the likelihood function for a sample of length n from a binomial distribution with parameter

0.
b) Please write down the posterior distribution for 6 after observing one flip of the coin.

¢) Now pretend that the true value of § = .4 and that someone who doesn’t know this has a beta prior distribution
with parameters with 5 = o = .5. Please write a Python class to simulate this person’s personal posterior distribution
for 6 for a single sequence of n draws.

d) Please plot the posterior distribution for € as a function of ¢ as n grows as 1, 2,

e) For various n’s, please describe and compute a Bayesian coverage interval for the interval [.45, .55].
f) Please tell what question a Bayesian coverage interval answers.

g) Please compute the Posterior probabililty that § € [.45, .55] for various values of sample size n.

h) Please use your Python class to study what happens to the posterior distribution as n — 400, again assuming that
the true value of § = .4, though it is unknown to the person doing the updating via Bayes’ Law.

196 Chapter 11. Two Meanings of Probability

Intermediate Quantitative Economics with Python

© Solution
a) Please write down the likelihood function and the posterior distribution for 6 after observing one flip of our coin.

Suppose the outcome is Y.

The likelihood function is:
L(Y|0) =Prob(X =Y|0) = HY(I — 9)1*Y

b) Please write the posterior distribution for € after observing one flip of our coin.

The prior distribution is
Prob(#) =

We can derive the posterior distribution for 6 via
Prob(Y|0)Prob(0)
Prob(Y)
_ Prob(Y|§)Prob(6)
J;' Prob(Y|6)Prob(6)de

Y —y o7t (1-6)"""
0" (1 -0 —555

=1 v Oa-1(1—
fo 6Y (1 —)Y B(

Prob(0|Y) =

9)5 1
wp 4

9Y+a71(1 _ 9)17Y+B71
j(‘)l Y +a-1(1 — §)1-Y+B-14¢

which means that
Prob(0|Y) ~ Beta(a + Y, 5+ (1Y)

Now please pretend that the true value of # = .4 and that someone who doesn’t know this has a beta prior with
b8=a=.5.

¢) Now pretend that the true value of 6 = .4 and that someone who doesn’t know this has a beta prior distribution
with parameters with 5 = o = .5. Please write a Python class to simulate this person’s personal posterior distribution
for 6 for a single sequence of n draws.

class Bayesian:

def _ init__ (self, 6=0.4, n=1_000_000, a=0.5, B=0.5):

mmn

Parameters:

6 : float, ranging from [0,1].
probability that one toss of a coin will be a head with Y = 1

n : int.
number of independent flips in an independent sequence of draws

a&B : int or float.
parameters of the prior distribution on 6

mmn

self.f6, self.n, self.a, self.p =6, n, a, B

11.3. Bayesian Interpretation 197

Intermediate Quantitative Economics with Python

self.prior = st.beta(a, B)

def draw(self):

mmn

simulate a single sequence of draws of length n, given probability 6

mmn

array = np.random.rand(self.n)
self.draws = (array < self.f).astype(int)

def form single_posterior(self, step_num):
mirrn

form a posterior distribution after observing the first step_num elements.
<of the draws

Parameters

Sstep_num: int.
number of steps observed to form a posterior distribution

the posterior distribution for sake of plotting in the subsequent steps

mmn

heads_num = self.draws|[:step_num].sum()
tails_num = step_num - heads_num

return st.beta(self.atheads_num, self.B+tails_num)

def form posterior_series(self,num_obs_list):
mrrmn

form a series of posterior distributions that form after observing.
wdifferent number of draws.

Parameters

num_obs_1list: a list of int.
a list of the number of observations used to form a series of.
sposterior distributions.

mmn

self.posterior_list = []
for num in num_obs_list:
self.posterior_list.append(self.form_single_posterior (num))

d) Please plot the posterior distribution for 6 as a function of 6 as n grows from 1,2,

198 Chapter 11. Two Meanings of Probability

Intermediate Quantitative Economics with Python

Bay_stat = Bayesian/()
Bay_stat.draw()

num_list = [1, 2, 3, 4, 5, 10, 20, 30, 50, 70, 100, 300, 500, 1000, # this line.
ofor finite n
5000, 10_000, 50_000, 100_000, 200_000, 300_000] # this line for.
sapproximately infinite n
Bay_stat.form posterior_series (num_list)
6_values = np.linspace(0.01, 1, 100)

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot (6_values, Bay_stat.prior.pdf (6_values), label='Prior Distribution', color=
<'k'", linestyle='—--")

for ii, num in enumerate (num_list[:14]):
ax.plot (6_values, Bay_stat.posterior_list[ii].pdf(6_values), label='Posterior.

owith n = %d' % num)

ax.set_title('P.D.F of Posterior Distributions', fontsize=15)
ax.set_xlabel (r"S\thetas$", fontsize=15)

ax.legend(fontsize=11)
plt.show ()

P.D.F of Posterior Distributions

554 —=-— Prior Distribution
—— Posterior withn=1
—— Posterior withn = 2
—— Posterior withn = 3
201 —— Posterior withn =4
—— Posterior withn =5
—— Posterior with n = 10
—— Posterior with n = 20
—— Posterior with n = 30
Posterior with n = 50
—— Posterior withn = 70
104 — Posterior with n = 100
—— Posterior with n = 300
—— Posterior with n = 500
—— Posterior with n = 1000

151

5 -
A =
P o
0_
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
e

e) For various n’s, please describe and compute .05 and .95 quantiles for posterior probabilities.

11.3. Bayesian Interpretation 199

Intermediate Quantitative Economics with Python

upper_bound = [ii.ppf(0.05) for ii in Bay_stat.posterior_list[:14]]
lower_bound = [ii.ppf(0.95) for ii in Bay_stat.posterior_list[:14]]

interval_df = pd.DataFrame ()
interval_df['upper'] = upper_bound
interval_df['lower'] = lower_bound
interval_df.index = num_list[:14]
interval_df = interval df.T
interval_df

1 2 3 4 S 10 20
upper 0.228520 0.097308 0.062413 0.046007 0.127776 0.185116 0.370047
lower 0.998457 0.902692 0.764466 0.650707 0.739366 0.652678 0.719909

30 50 70 100 300 500 1000
upper 0.38571 0.444113 0.389167 0.360361 0.351081 0.378201 0.377717
lower 0.67640 0.670884 0.583119 0.522172 0.443718 0.450533 0.428697

As n increases, we can see that Bayesian coverage intervals narrow and move toward 0.4.

f) Please tell what question a Bayesian coverage interval answers.

The Bayesian coverage interval tells the range of 6 that corresponds to the [p;, p5] quantiles of the cuamulative prob-

ability distribution (CDF) of the posterior distribution.

To construct the coverage interval we first compute a posterior distribution of the unknown parameter 6.

If the CDF is F'(6), then the Bayesian coverage interval [a, b] for the interval [p;, p,] is described by

F(a) = p;, F(b) = py

g) Please compute the Posterior probabililty that € [.45, .55] for various values of sample size n.

left_value, right_value = 0.45, 0.55

posterior_prob_list=[ii.cdf (right_value)-ii.cdf (left_value) for ii in Bay_stat.
sposterior_list]

fig, ax = plt.subplots(figsize=(8, 5))
ax.plot (posterior_prob_list)
ax.set_title('Posterior Probabililty that '+ r"θ" +' Ranges from to

'$(left_value, right_value),

fontsize=13)

ax.set_xticks (np.arange (0, len(posterior_prob_list), 3))
ax.set_xticklabels (num_list[::3])
ax.set_xlabel ('Number of Observations', fontsize=11)

plt.show ()

200 Chapter 11. Two Meanings of Probability

Intermediate Quantitative Economics with Python

Posterior Probabililty that 6 Ranges from 0.45 to 0.55

0.6 1

0.5

0.4 1

0.3 1

0.2 1

0.1+

0.0 1

T T T T
1 4 20 70 500 10000 200000
Number of Observations

Notice that in the graph above the posterior probabililty that § € [.45,.55] typically exhibits a hump shape as n
increases.

Two opposing forces are at work.

The first force is that the individual adjusts his belief as he observes new outcomes, so his posterior probability
distribution becomes more and more realistic, which explains the rise of the posterior probabililty.

However, [.45, .55] actually excludes the true § = .4 that generates the data.

As a result, the posterior probabililty drops as larger and larger samples refine his posterior probability distribution
of 6.

The descent seems precipitous only because of the scale of the graph that has the number of observations increasing
disproportionately.

When the number of observations becomes large enough, our Bayesian becomes so confident about # that he considers
0 € [.45,.55] very unlikely.

That is why we see a nearly horizontal line when the number of observations exceeds 500.

h) Please use your Python class to study what happens to the posterior distribution as n — 400, again assuming that
the true value of § = .4, though it is unknown to the person doing the updating via Bayes’ Law.

Using the Python class we made above, we can see the evolution of posterior distributions as n approaches infinity.

11.3. Bayesian Interpretation 201

Intermediate Quantitative Economics with Python

fig, ax = plt.subplots(figsize=(10, 6))

for ii, num in enumerate (num_list[14:]):
ii += 14
ax.plot (6_values, Bay_stat.posterior_list[ii].pdf(6_values),
label='Posterior with n=%d thousand' % (num/1000))

ax.set_title('P.D.F of Posterior Distributions', fontsize=15)
ax.set_xlabel (r"θs", fontsize=15)
ax.set_x1im (0.3, 0.5)

ax.legend(fontsize=11)
plt.show ()

P.D.F of Posterior Distributions

—— Posterior with n=5 thousand
—— Posterior with n=10 thousand
400 —— Posterior with n=50 thousand
—— Posterior with n=100 thousand
—— Posterior with n=200 thousand
—— Posterior with n=300 thousand
300 4
200 A
100
0
0.300 0.3:25 0.3:50 0.3|75 0.4|00 0.4|25 0.4|50 0.4|?5 0.500

¢

As n increases, we can see that the probability density functions concentrate on 0.4, the true value of 6.
Here the posterior means converges to 0.4 while the posterior standard deviations converges to 0 from above.

To show this, we compute the means and variances statistics of the posterior distributions.

mean_list = [ii.mean() for ii in Bay_stat.posterior_list]
std_list = [ii.std() for ii in Bay_stat.posterior_list]

fig, ax = plt.subplots(l, 2, figsize=(14, 5))

ax[0] .plot (mean_list)

ax[0] .set_title('Mean Values of Posterior Distribution', fontsize=13)
ax[0] .set_xticks (np.arange (0, len(mean_list), 3))

ax[0] .set_xticklabels (num_list[::37])

ax[0] .set_xlabel ('Number of Observations', fontsize=11)

x[1].plot (std_list)

ax[1].set_title('Standard Deviations of Posterior Distribution', fontsize=13)

x[1].set_xticks (np.arange (0, len(std_list), 3))
[

ax|[

x[1].set_xticklabels (num_list[::3]) . .
ZOi 1] .set_xlabel ('Number of Observations', fontsiczgg?igr 11. Two Meanmgs of PrObablllty

a
a

plt.show ()

Intermediate Quantitative Economics with Python

Mean Values of Posterior Distribution Standard Deviations of Posterior Distribution
0.25 A
0.7 4
0.20
0.6 4
0.15 A
0.5 4
0.10
047 0.05 -
0.3 0.00 -
; . T T T T T T T T T T ; .
1 4 20 70 500 10000 200000 1 4 20 70 500 10000 200000
Number of Observations Number of Observations

How shall we interpret the patterns above?
The answer is encoded in the Bayesian updating formulas.

It is natural to extend the one-step Bayesian update to an n-step Bayesian update.

Prob(6,k) Prob(k|6) * Prob(6) Prob(k|6) x Prob(9)

Prob(0]k) = =
Prob(k) Prob(k) fol Prob(k|#) = Prob(#)d6
N — 61(1-9)51
C (Na—eN et Ty
- 1 a—1(1_0)B-1
b ()@ —o)N—kgk 5 E it B<(1cx,[0;; do
(1 _ 9>ﬁ+N7k71 * 9a+k71

Ll(l _ 9)B+N7k71 % Qatk—140

= Beta(a+ k,8+ N — k)
A beta distribution with v and (3 has the following mean and variance.

i _a
The mean is e

The variance is W

o « can be viewed as the number of successes

(3 can be viewed as the number of failures
The random variables k£ and N — k are governed by Binomial Distribution with § = 0.4.
Call this the true data generating process.

According to the Law of Large Numbers, for a large number of observations, observed frequencies of k and N — k
will be described by the true data generating process, i.e., the population probability distribution that we assumed when
generating the observations on the computer. (See Exercise 11.2.1).

Consequently, the mean of the posterior distribution converges to 0.4 and the variance withers to zero.

upper_bound = [ii.ppf(0.95) for ii in Bay_stat.posterior_list]
lower_bound = [ii.ppf(0.05) for ii in Bay_stat.posterior_list]

fig, ax = plt.subplots(figsize=(10, 6))
(continues on next page)

11.3. Bayesian Interpretation 203

Intermediate Quantitative Economics with Python

(continued from previous page)

ax.scatter (np.arange (len (upper_bound)), upper_bound, label='95 th Quantile')
ax.scatter (np.arange (len(lower_bound)), lower_bound, label='05 th Quantile')

ax.set_xticks (np.arange (0, len (upper_bound), 2))

ax.set_xticklabels (num_list[::2])

ax.set_xlabel ('Number of Observations', fontsize=12)

ax.set_title('Bayesian Coverage Intervals of Posterior Distributions', fontsize=15)

ax.legend (fontsize=11)

plt.show ()

Bayesian Coverage Intervals of Posterior Distributions

1.0) ® 95 th Quantile
05 th Quantile
L]

0.8 A

]

* L]
L]] e .
0.6 1 °
L]
o L]
L
0.4 - L] ™ - o P a
0.2 1
0-0 T T T T T T T T T T
1 3 5 20 50 100 500 5000 50000 200000

Number of Observations

After observing a large number of outcomes, the posterior distribution collapses around 0.4.
Thus, the Bayesian statististian comes to believe that 6 is near .4.

As shown in the figure above, as the number of observations grows, the Bayesian coverage intervals (BCIs) become
narrower and narrower around 0.4.

However, if you take a closer look, you will find that the centers of the BCIs are not exactly 0.4, due to the persistent
influence of the prior distribution and the randomness of the simulation path.

204 Chapter 11. Two Meanings of Probability

Intermediate Quantitative Economics with Python

11.4 Role of a Conjugate Prior

We have made assumptions that link functional forms of our likelihood function and our prior in a way that has eased our
calculations considerably.

In particular, our assumptions that the likelihood function is binomial and that the prior distribution is a beta distribution
have the consequence that the posterior distribution implied by Bayes’ Law is also a beta distribution.

So posterior and prior are both beta distributions, albeit ones with different parameters.

When a likelihood function and prior fit together like hand and glove in this way, we can say that the prior and posterior
are conjugate distributions.

In this situation, we also sometimes say that we have conjugate prior for the likelihood function Prob(X9).
Typically, the functional form of the likelihood function determines the functional form of a conjugate prior.

A natural question to ask is why should a person’s personal prior about a parameter 6 be restricted to be described by a
conjugate prior?

‘Why not some other functional form that more sincerely describes the person’s beliefs?

To be argumentative, one could ask, why should the form of the likelihood function have anything to say about my personal
beliefs about 6?

A dignified response to that question is, well, it shouldn’t, but if you want to compute a posterior easily you’ll just be
happier if your prior is conjugate to your likelihood.

Otherwise, your posterior won't have a convenient analytical form and you’ll be in the situation of wanting to apply the
Markov chain Monte Carlo techniques deployed in this quantecon lecture.

We also apply these powerful methods to approximating Bayesian posteriors for non-conjugate priors in this quantecon
lecture and this quantecon lecture

11.4. Role of a Conjugate Prior 205

Intermediate Quantitative Economics with Python

206 Chapter 11. Two Meanings of Probability

CHAPTER
TWELVE

MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION

Contents
o Multivariate Hypergeometric Distribution
— Overview

— The Administrator’s Problem

- Usage

12.1 Overview

This lecture describes how an administrator deployed a multivariate hypergeometric distribution in order to access
the fairness of a procedure for awarding research grants.

In the lecture we’ll learn about
« properties of the multivariate hypergeometric distribution
« first and second moments of a multivariate hypergeometric distribution

« using a Monte Carlo simulation of a multivariate normal distribution to evaluate the quality of a normal approxi-
mation

« the administrator’s problem and why the multivariate hypergeometric distribution is the right tool

12.2 The Administrator’s Problem

An administrator in charge of allocating research grants is in the following situation.

To help us forget details that are none of our business here and to protect the anonymity of the administrator and the
subjects, we call research proposals balls and continents of residence of authors of a proposal a color.

There are K balls (proposals) of color i.

There are c distinct colors (continents of residence).
Thus,2=1,2,...,¢c

So there is a total of N = 25:1 K, balls.

207

Intermediate Quantitative Economics with Python

All N of these balls are placed in an urn.
Then n balls are drawn randomly.

The selection procedure is supposed to be color blind meaning that ball quality, a random variable that is supposed to
be independent of ball color, governs whether a ball is drawn.

Thus, the selection procedure is supposed randomly to draw n balls from the urn.
The n balls drawn represent successful proposals and are awarded research funds.

The remaining N — n balls receive no research funds.

12.2.1 Details of the Awards Procedure Under Study

Let k; be the number of balls of color 7 that are drawn.
Things have to add up so 2;1 k; =n.

Under the hypothesis that the selection process judges proposals on their quality and that quality is independent of conti-
nent of the author’s continent of residence, the administrator views the outcome of the selection procedure as a random
vector

ky

To evaluate whether the selection procedure is color blind the administrator wants to study whether the particular re-
alization of X drawn can plausibly be said to be a random draw from the probability distribution that is implied by the
color blind hypothesis.

The appropriate probability distribution is the one described here.
Let’s now instantiate the administrator’s problem, while continuing to use the colored balls metaphor.
The administrator has an urn with N = 238 balls.
157 balls are blue, 11 balls are green, 46 balls are yellow, and 24 balls are black.
So (K, K,, K5, K,) = (157,11,46,24) and ¢ = 4.
15 balls are drawn without replacement.
Son = 15.
The administrator wants to know the probability distribution of outcomes
ky

x=|P
b
In particular, he wants to know whether a particular outcome - in the form of a 4 x 1 vector of integers recording the
numbers of blue, green, yellow, and black balls, respectively, - contains evidence against the hypothesis that the selection

process is fair, which here means color blind and truly are random draws without replacement from the population of NV
balls.

The right tool for the administrator’s job is the multivariate hypergeometric distribution.

208 Chapter 12. Multivariate Hypergeometric Distribution

https://en.wikipedia.org/wiki/Hypergeometric_distribution

Intermediate Quantitative Economics with Python

12.2.2 Multivariate Hypergeometric Distribution

Let’s start with some imports.

import matplotlib.pyplot as plt
import numpy as np

from scipy.special import comb
from scipy.stats import normaltest
from numba import jit, prange

To recapitulate, we assume there are in total ¢ types of objects in an urn.

If there are K type 7 object in the urn and we take n draws at random without replacement, then the numbers of type ¢
objects in the sample (kq, ks, ..., k) has the multivariate hypergeometric distribution.

Note again that N = Z;l K is the total number of objects in the urn and n = 25:1 k;.

Notation

m) . m!

We use the following notation for binomial coefficients: (p gl

The multivariate hypergeometric distribution has the following properties:

Probability mass function:

c K,
Pr{X, =k, Vi} = Iy G

Mean:
E(X;) = n%
Variances and covariances:
Var(X;) = n]]\\;:? % (1 - %)
Cov(X,, X;) = _njj\\;:? %%

To do our work for us, we’ll write an Urn class.

class Urn:

def _ init_ (self, K_arr):

mrn

Initialization given the number of each type i object in the urn.

Parameters
K_arr: ndarray (int)
number of each type i1 object.

mn

self.K_arr = np.array(K_arr)
self.N = np.sum(K_arr)
self.c = len(K_arr)

def pnf (self, k_arr):

mrn

(continues on next page)

12.2. The Administrator’s Problem 209

Intermediate Quantitative Economics with Python

def

def

(continued from previous page)

Probability mass function.

Parameters

k_arr: ndarray (int)
number of observed successes of each object.

mrn

K_arr, N = self.K_ arr, self.N

k_arr = np.atleast_2d(k_arr)

n = np.sum(k_arr, 1)

num = np.prod(comb (K_arr, k_arr), 1)
denom = comb (N, n)

pr = num / denom
return pr

moments (self, n):

mrrn

Compute the mean and variance-covariance matrix for
multivariate hypergeometric distribution.

Parameters
n: int
number of draws.

mrn

K_arr, N, ¢ = self.K_arr, self.N, self.c

mean
B =n* Karr / N

variance-covariance matrix
¥ = np.full((c, ¢c), n * (N -n) / (N - 1) / N ** 2)
for i in range(c-1):

»[i, i] *= K_arr[i] * (N - K_arr[i])
for j in range(i+l, c):
r[i, j] *= - K_arr[i] * K_arr[j]
Z:[jl l] = E[il j]

v[-1, -1] *= K_arr[-1] * (N - K_arr[-11])
return p, I

simulate(self, n, size=1, seed=None):

mrn

Simulate a sample from multivariate hypergeometric
distribution where at each draw we take n objects
from the urn without replacement.

Parameters

(continues on next page)

210

Chapter 12. Multivariate Hypergeometric Distribution

Intermediate Quantitative Economics with Python

12

number of objects for each draw.

size:

int (optional)

sample size.

seed:

int (optional)

random seed.

mn

K_arr =

gen =
sample =

return sample

.3 Usage

12.3.1 First example

self.K_arr

Apply this to an example from wiki:

np.random.Generator (np.random.PCG64 (seed))
gen.multivariate_hypergeometric (K_arr,

n,

(continued from previous page)

size=size)

Suppose there are 5 black, 10 white, and 15 red marbles in an urn. If six marbles are chosen without replacement, the

probability that exactly two of each color are chosen is

construct the urn

K_arr =
urn =

[5, 10,
Urn (K_arr)

15]

5
2

(

30
6

)

15

)(2)(

P(2 black, 2 white, 2 red) = (

2

) = 0.079575596816976

Now use the Urn Class method pm£ to compute the probability of the outcome X = [2 2 2]

k_arr =

(2, 2, 2]

urn.pmf (k_arr)

array ([0.0795756])

array of number of observed successes

We can use the code to compute probabilities of a list of possible outcomes by constructing a 2-dimensional array k_arr
and pmf will return an array of probabilities for observing each case.

k_

arr = [[2, 2, 2],

urn.pmf (k_arr)

array ([0.0795756,

1, 3,

2]1]

0.106100817)

Now let’s compute the mean vector and variance-covariance matrix.

n
B,

-6

Y = urn.moments (n)

12.3. Usage

211

https://en.wikipedia.org/wiki/Hypergeometric_distribution#Multivariate_hypergeometric_distribution

Intermediate Quantitative Economics with Python

array ([[0.68965517, -0.27586207, -0.4137931 1,
[-0.27586207, 1.10344828, -0.82758621],
[-0.4137931 , -0.82758621, 1.2413793111])

12.3.2 Back to The Administrator’s Problem

Now let’s turn to the grant administrator’s problem.

Here the array of numbers of 4 objects in the urn is (157, 11,46, 24).

K_arr = [157, 11, 46, 24]
urn = Urn(K_arr)

Let’s compute the probability of the outcome (10, 1,4, 0).

k_arr = [10, 1, 4, 0]
urn.pmf (k_arr)

array ([0.015477381])

We can compute probabilities of three possible outcomes by constructing a 3-dimensional arrays k_arr and utilizing
the method pmf of the Urn class.

k_arr = [[5, 5, 4 ,1], [10, 1, 2, 21, [13, O, 2, 0Q]]
urn.pnmf (k_arr)

array ([6.21412534e-06, 2.70935969%9e-02, 1.61839976e-021])

Now let’s compute the mean and variance-covariance matrix of X when n = 6.

n = 6 # number of draws
B, & = urn.moments (n)

mean

u

array ([3.95798319, 0.27731092, 1.15966387, 0.605042021])

variance-covariance matrix

1.31862604, -0.17907267, -0.74884935, -0.39070401],
0.17907267, 0.25891399, -0.05246715, -0.02737417],
-0.74884935, -0.05246715, 0.91579029, -0.11447379],
0.39070401, -0.02737417, -0.11447379, 0.53255196]1])
We can simulate a large sample and verify that sample means and covariances closely approximate the population means
and covariances.

212 Chapter 12. Multivariate Hypergeometric Distribution

Intermediate Quantitative Economics with Python

size = 10_000_000
sample = urn.simulate(n, size=size)

mean
np.mean (sample, 0)

array ([3.9580064, 0.2773455, 1.1596331, 0.605015 1)

variance covariance matrix
np.cov (sample.T)

.31867167, -0.17926978, -0.74868821, -0.39071368]
.17926978, 0.2589112 , -0.05240373, -0.02723769]
.74868821, -0.05240373, 0.91570046, -0.11460853]
.39071368, -0.02723769, -0.11460853, 0.5325599]

array ([’

1)
Evidently, the sample means and covariances approximate their population counterparts well.

12.3.3 Quality of Normal Approximation

To judge the quality of a multivariate normal approximation to the multivariate hypergeometric distribution, we draw
a large sample from a multivariate normal distribution with the mean vector and covariance matrix for the correspond-
ing multivariate hypergeometric distribution and compare the simulated distribution with the population multivariate
hypergeometric distribution.

sample_normal = np.random.multivariate_normal (p, &, size=size)

def bivariate_normal(x, y, 1, &, i, Jj):

p_x, p_y = plil, plj]
o_xX, o_y = np.sqrt(Z[i, 1]), np.sqgrt(Z[3, JI1)
o_xy = z[i, 7J]

X_ P =X - P_X
y_H Yy - BY

p =o_xy / (o_x * o_y)
zZ = X_P**2 / O_X**2 + y_p**2 / o_y**2 - 2 * p * xp*yp/ (o_x * o_y)
denom = 2 * np.pi * o_x * o_y * np.sqrt(l - p**2)

return np.exp(-z / (2 * (1 - p**2))) / denom
@jit
def count (vecl, vec2, n):

size = sample.shape[0]

count_mat = np.zeros((n+tl, n+l))

for i in prange (size):

count_mat [vecl[i], vec2[i]] += 1

return count_mat

12.3. Usage 213

Intermediate Quantitative Economics with Python

C = urn.c
fig, axs = plt.subplots(c, c, figsize=(14, 14))

grids for ploting the bivariate Gaussian
x_grid = np.linspace (-2, n+1, 100)
y_grid = np.linspace (-2, n+1, 100)
X, Y = np.meshgrid(x_grid, y_grid)

for i in range(c):

axs[i, i].hist (sample[:, i], bins=np.arange(0, n, 1), alpha=0.5, density=True,._
<label="hypergeom')

axs[i, 1i].hist (sample_normal[:, i], bins=np.arange(0, n, 1), alpha=0.5,.
~»density=True, label='normal')

axs[i, 1].legend()

axs[i, i].set_title('Sk_{' +str(i+l) +'}s$")

for j in range(c):

if 1 ==
continue

bivariate Gaussian density function

Z = bivariate_normal (X, Y, u, Z, i, 7j)

cs = axs[i, j].contour(X, Y, Z, 4, colors="black", alpha=0.6)
axs[i, jl.clabel(cs, inline=1, fontsize=10)

empirical multivariate hypergeometric distrbution

count_mat = count (sample[:, i], sample[:, J], n)

axs[i, j].pcolor (count_mat.T/size, cmap='Blues')

axs[i, jl.set_title('s$(k_{' +str(i+l) +'}, k_{' + str(j+1l) + "})S$")

plt.show ()

214 Chapter 12. Multivariate Hypergeometric Distribution

Intermediate Quantitative Economics with Python

k1 (k1,k2) (k1,k3) (k1,ka)
0.6 1 hypergeom 6 6 6
normal
0.5 A
4 4 44
0.4
0.3 2 21 2 A
D
0.2 4
01 0 0+ ==
0.1 6
0.0 T T -2 T T T T -2 T T T T -2 T T T T
o] 2 =2 0 2 4 6 =2 0 2 4 -2 0 2 4
(K2, k1) ka (K2, k3) (K2, Ka)
6 0 hypergeom 6 6
g normal
41 0.6 1 41 41
2 0.4 4 21 2 24
S
0 0.2 04 04 &
-2 T T T T 0.0 T T -2 T T T T -2 T T T T
-2 0 2 4 6 0 2 4 -2 0 2 4 6 -2 0 2 4 6
(k3, k1) (k3, k2) k3 (k3, ka)
6 6 0.4 hypergeom 6
normal
44 44 0.3 44
24 2 0.2 2
04 04 @ 0.1 1 04 @
0.05
-2 T T T T -2 T T T T 0.0 — T T -2 T T T T
-2 -2 0 2 4 0 2 -2 0 2 4 6
(ka, k2) (ka, k3) ks
6 6 6 0.6 4 hypergeom
normal
0.5 -
44 44 4
0.4
2 24 2 0.3
o) 0.2 1
0 0 01
J 0.1
-2 T T T T -2 T T T T -2 T T T T 0.0 — T T
=2 4] 2 4 6 =2 0 2 4 6 =2 0 2 4 6 0 2 4

The diagonal graphs plot the marginal distributions of k; for each 7 using histograms.
Note the substantial differences between hypergeometric distribution and the approximating normal distribution.
The off-diagonal graphs plot the empirical joint distribution of k; and k; for each pair (4, 9)-

The darker the blue, the more data points are contained in the corresponding cell. (Note that &, is on the x-axis and k; is
on the y-axis).

The contour maps plot the bivariate Gaussian density function of (ki, kj) with the population mean and covariance given
by slices of i and X that we computed above.

Let’s also test the normality for each k; using scipy.stats.normaltest thatimplements D’Agostino and Pearson’s
test that combines skew and kurtosis to form an omnibus test of normality.

The null hypothesis is that the sample follows normal distribution.

normaltest returns an array of p-values associated with tests for each &, sample.

12.3. Usage 215

Intermediate Quantitative Economics with Python

test_multihyper = normaltest (sample)
test_multihyper.pvalue

array([0., 0., 0., 0.])

As we can see, all the p-values are almost 0 and the null hypothesis is soundly rejected.

By contrast, the sample from normal distribution does not reject the null hypothesis.

test_normal = normaltest (sample_normal)
test_normal.pvalue

array ([0.91079805, 0.43938061, 0.31822312, 0.67446622])

The lesson to take away from this is that the normal approximation is imperfect.

216 Chapter 12. Multivariate Hypergeometric Distribution

CHAPTER
THIRTEEN

MULTIVARIATE NORMAL DISTRIBUTION

Contents

o Multivariate Normal Distribution
— Overview
— The Multivariate Normal Distribution
- Bivariate Example
— Trivariate Example
— One Dimensional Intelligence (1Q)
- Information as Surprise
— Cholesky Factor Magic
— Math and Verbal Intelligence
— Univariate Time Series Analysis
- Stochastic Difference Equation
- Application to Stock Price Model
- Filtering Foundations

— Classic Factor Analysis Model

- PCA and Factor Analysis

13.1 Overview

This lecture describes a workhorse in probability theory, statistics, and economics, namely, the multivariate normal
distribution.

In this lecture, you will learn formulas for
« the joint distribution of a random vector x of length N
» marginal distributions for all subvectors of z
« conditional distributions for subvectors of = conditional on other subvectors of x

‘We will use the multivariate normal distribution to formulate some useful models:

217

Intermediate Quantitative Economics with Python

« afactor analytic model of an intelligence quotient, i.e., IQ

« a factor analytic model of two independent inherent abilities, say, mathematical and verbal.
» a more general factor analytic model

« Principal Components Analysis (PCA) as an approximation to a factor analytic model

« time series generated by linear stochastic difference equations

« optimal linear filtering theory

13.2 The Multivariate Normal Distribution

This lecture defines a Python class MultivariateNormal to be used to generate marginal and conditional distri-
butions associated with a multivariate normal distribution.

For a multivariate normal distribution it is very convenient that

« conditional expectations equal linear least squares projections

« conditional distributions are characterized by multivariate linear regressions
We apply our Python class to some examples.
We use the following imports:

import matplotlib.pyplot as plt
import numpy as np

from numba import jit

import statsmodels.api as sm

Assume that an IV x 1 random vector z has a multivariate normal probability density.

This means that the probability density takes the form

N
2

fEmE) = @m) et (8) Fexp (—5(z—p) 57 (z—)
where © = Ez is the mean of the random vector z and ¥ = F (2 — p) (2 — u)/ is the covariance matrix of z.

The covariance matrix X is symmetric and positive definite.

@jit
def f(z, p, %):

mmn

The density function of multivariate normal distribution.

Parameters
z: ndarray (float, dim=2)
random vector, N by 1
y: ndarray(float, dim=1 or 2)
the mean of z, N by 1
Y: ndarray (float, dim=2)
the covarianece matrix of z, N by 1

mmn

z = np.atleast_2d(z)
np.atleast_2d(pn)
np.atleast_2d (%)

M
Il

(continues on next page)

218 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

N = z.size

templ = np.linalg.det (%) ** (-1/2)

temp2 = np.exp(-.5 * (z - p).T @ np.linalg.inv(Z)

return (2 * np.pi) ** (-N/2) * templ * temp2

For some integer k € {1, ..., N — 1}, partition z as

z
z= L,
Z9

where z; is an (N — k) x 1 vector and z, is a k x 1 vector.

Let
u:|:M1 }’ Z:{gu
Ha 21
be corresponding partitions of y and 3.
The marginal distribution of z; is
 multivariate normal with mean j; and covariance matrix ;.
The marginal distribution of z, is
« multivariate normal with mean (1, and covariance matrix qq.

The distribution of z; conditional on z, is

« multivariate normal with mean

iy = py + B (29 — pig)

and covariance matrix

Y =20 — 280 By = By — BEgf

where

B=1315%5

@

(continued from previous page)

isan (N — k) x k matrix of population regression coefficients of the (N — k) x 1 random vector z; — 11, onthe k x 1

random vector z, — fiy.

The following class constructs a multivariate normal distribution instance with two methods.

o amethod partition computes 3, taking k as an input

« amethod cond_dist computes either the distribution of z; conditional on z, or the distribution of 2, conditional

on zy
class MultivariateNormal:
mrirn

Class of multivariate normal distribution.

Parameters

u: ndarray(float, dim=1)

(continues on next page)

13.2. The Multivariate Normal Distribution

219

Intermediate Quantitative Economics with Python

(continued from previous page)

the mean of z, N by 1

Y: ndarray (float, dim=2)
the covarianece matrix of z, N by 1
Arguments
u, X:
see parameters
us: list (ndarray(float, dim=1))
list of mean vectors ul and p2 in order
Js: list(list (ndarray (float, dim=2)))
2 dimensional list of covariance matrices
y11, ¥12, ¥21, ¥22 in order
Bs: list (ndarray (float, dim=1))
list of regression coefficients B1 and B2 in order
def _ init_ (self, p, Z):
"initialization"
self.p = np.array(p)
self.Z = np.atleast_2d (%)
def partition(self, k):
Given k, partition the random vector z into a size k vector zl
and a size N-k vector z2. Partition the mean vector pu into
ul and p2, and the covariance matrix Y into Y11, 512, ¥21, 522
correspondingly. Compute the regression coefficients B1 and B2
using the partitioned arrays.
p = self.n
YL = self.Z
self.ps = [pl:k], nlk:]]
self.%s = [[Z[:k, :k], &[:k, k:11,
[Z[k:, :k], Z[k:, k:]1]
self.Bs = [self.Zs[0][1l] @ np.linalg.inv(self.Zs[1][1]),
self.Zs[1][0] @ np.linalg.inv(self.Zs[0][0])]
def cond_dist (self, ind, z):

mn

Compute the conditional distribution of zl given z2, or reversely.
Argument ind determines whether we compute the conditional
distribution of z1 (ind=0) or z2 (ind=1).

y_hat: ndarray (float, ndim=1)
The conditional mean of zl or zZ2.
Y_hat: ndarray (float, ndim=2)
The conditional covariance matrix of zl or z2.
mrrmnm
B = self.Bs[ind]
us = self.ps
s = self.Zs

(continues on next page)

220

Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

p_hat = ps[ind] + B @ (z - ups[l-ind])

¥_hat = Is[ind][ind] - B @ Es[l-ind][1-ind]

return p_hat, I_hat

Let’s put this code to work on a suite of examples.

We begin with a simple bivariate example; after that we’ll turn to a trivariate example.

(continued from previous page)

We'll compute population moments of some conditional distributions using our MultivariateNormal class.

For fun we'll also compute sample analogs of the associated population regressions by generating simulations and then

computing linear least squares regressions.

We'll compare those linear least squares regressions for the simulated data to their population counterparts.

13.3 Bivariate Example

We start with a bivariate normal distribution pinned down by

.D 1
“_{1.0]’ E_[.S
B = np.array([.5, 1.1)
by

= np.array([[1., .51, [.5 ,1.11)

construction of the multivariate normal instance
multi_normal = MultivariateNormal (p, IZ)

k = 1 # choose partition

partition and compute regression coefficients
multi_normal.partition (k)
multi_normal.Bs[0],multi_normal.PRs[1]

(array ([[0.5]1), array([[0.5]]))

Let’s illustrate the fact that you can regress anything on anything else.

We have computed everything we need to compute two regression lines, one of z, on z;, the other of z; on z,.

We'll represent these regressions as

Z=a; +bizy+ €

and

Zy = g + byzy + €9

where we have the population least squares orthogonality conditions
Ee zy =0
and
Eeyzy =0

Let’s compute ay, ay, by, by.

13.3. Bivariate Example

221

Inter

mediate Quantitative Economics with Python

bet

al
bl

a2
b2

Let’s

a = multi_normal.Bs

pl0] - betalO0]*u[l]
betal0]

= pll] - beta[l]*p[0]
betal[1]

print out the intercepts and slopes.

For the regression of z; on z, we have

print ("al = ", al)
print ("bl =", Dbl)
al = [[0.]]
bl = [[0.5]]

For the regression of z, on z; we have

print ("a2 =", a2)
print ("b2 =", Db2)
a2 = [[0.75]]
b2 = [[0.5]]
Now let’s plot the two regression lines and stare at them.

z2 = np.linspace(-4,4,100)

al = np.squeeze (al)

bl = np.squeeze (bl)

a2 = np.squeeze (a2)

b2 = np.squeeze (b2)

z1l = bl*z2 + al

zlh = z2/b2 - a2/b2

fig = plt.figure(figsize=(12,12))

ax = fig.add_subplot (1, 1, 1)

ax.set (xlim= (-4, 4), ylim=(-4, 4))
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('zero')
ax.spines|['right'].set_color('none')
ax.spines['top'].set_color ('none')
ax.xaxlis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left'")

plt.ylabel ('z_1', loc = 'top')

plt.xlabel ('z_2,', loc = 'right')
plt.title('two regressions')

plt.plot(z2,z1, 'r', label = "z_1 on z_2")
plt.plot(z2,z1h, 'b', label = "z_2 on z_1S")

(continues on next page)

222 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

(continued from previous page)

plt.legend()
plt.show ()

two regressions

— Z1 0N 2z
—_ Z; 0N &3

22,

The red line is the expectation of z; conditional on 2.

The intercept and slope of the red line are

print ("al = ", al)
print ("bl =", Dbl)
al = 0.0
bl = 0.5

The blue line is the expectation of z, conditional on z;.

The intercept and slope of the blue line are

13.3. Bivariate Example 223

Intermediate Quantitative Economics with Python

print ("-a2/b2 = ", - a2/b2)
print ("1/b2 = ", 1/b2)
-a2/b2 = -1.5
1/b2 = 2.0

We can use these regression lines or our code to compute conditional expectations.
Let’s compute the mean and variance of the distribution of z, conditional on z; = 5.

After that we'll reverse what are on the left and right sides of the regression.
compute the cond. dist. of zl
ind = 1
z1l = np.array([5.]) # given =zl
p2_hat, Z2_hat = multi_normal.cond_dist (ind, z1)
print ('pw2_hat, Z2_hat = ', p2_hat, I2_hat)

p2_hat, Z2_hat = [3.25] [[0.75]]

Now let’s compute the mean and variance of the distribution of z; conditional on z5 = 5.
compute the cond. dist. of zl
ind = 0
z2 = np.array([5.]) # given z2
pl_hat, ¥l1_hat = multi_normal.cond_dist (ind, z2)
print ('pl_hat, ¥1_hat = ', pl_hat, Zl1_hat)

pl_hat, zl1_hat = [2.5] [[0.75]]
Let’s compare the preceding population mean and variance with outcomes from drawing a large sample and then regress-
Ing z; — iy 0N 29 — fiy.

We know that

Ezy |2y = (11 — Bug) + B2y
which can be arranged to

21—y = Bz — o) +e,

We anticipate that for larger and larger sample sizes, estimated OLS coefficients will converge to 3 and the estimated
variance of e will converge to ;.

n = 1_000_000 # sample size

simulate multivariate normal random vectors
data = np.random.multivariate_normal (p, I, size=n)
z1_data = datal:, 0]

z2_data = datal[:, 1]

OLS regression

pl, p2 = multi_normal.us
results = sm.OLS(zl_data - pl, z2_data - p2).fit()

Let’s compare the preceding population 5 with the OLS sample estimate on z5 — o

224 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

multi_normal.Bs[0], results.params

(array ([[0.5]]), array([0.499380281]))

Let’s compare our population f)l with the degrees-of-freedom adjusted estimate of the variance of €

%1_hat, results.resid @ results.resid.T / (n - 1)

(array ([[0.75]]), np.float64(0.7494534633579935))

Lastly, let’s compute the estimate of Ez|z, and compare it with /i,

pl_hat, results.predict(z2 - p2) + pl
(array ([2.5]), array([2.49752111]))

Thus, in each case, for our very large sample size, the sample analogues closely approximate their population counterparts.

A Law of Large Numbers explains why sample analogues approximate population objects.

13.4 Trivariate Example

Let’s apply our code to a trivariate example.

We'll specify the mean vector and the covariance matrix as follows.

1 = np.random.random(3)
C = np.random.random((3, 3))
Y = C @ C.T # positive semi-definite

multi_normal = MultivariateNormal (p,)

p, =

(array ([0.56827963, 0.12648743, 0.80842306]),

array ([[0.73520137, 0.91427284, 0.9239957 1,
[0.91427284, 1.43994484, 0.97123264],
[0.9239957 , 0.97123264, 1.2662219 11))

k =1
multi_normal.partition (k)

T . 2
Let’s compute the distribution of z; conditional on 2z, = [5] .

ind = 0
z2 = np.array([2., 5.1)

pl_hat, £1_hat = multi_normal.cond_dist (ind, z2)

n = 1_000_000

data = np.random.multivariate_normal (n, I, size=n)
z1_data = datal:, :k]

z2_data = datal:, k:]

13.4. Trivariate Example 225

Intermediate Quantitative Economics with Python

pl, p2 = multi_normal.us
results = sm.OLS(zl_data - pl, z2_data - p2).fit()

As above, we compare population and sample regression coefficients, the conditional covariance matrix, and the condi-
tional mean vector in that order.

multi_normal.Bs[0], results.params

(array ([[0.29574823, 0.50287817]]), array([0.29573064, 0.50287434]))
%1_hat, results.resid @ results.resid.T / (n - 1)

(array ([[0.00014952]]), np.float64(0.00014954706705336656))
pl_hat, results.predict(z2 - p2) + pl

(array ([3.23022022]), array([3.230171211))

Once again, sample analogues do a good job of approximating their populations counterparts.

13.5 One Dimensional Intelligence (1Q)

Let’s move closer to a real-life example, namely, inferring a one-dimensional measure of intelligence called IQ from a list
of test scores.

The ith test score y, equals the sum of an unknown scalar 1Q 6 and a random variable w;,.
y,=0+o,w;, i=1,..,n
The distribution of 1Q’s for a cross-section of people is a normal random variable described by
0= g+ oW, -

We assume that the noises {w; }¥; in the test scores are IID and not correlated with 1Q.

We also assume that {w, }7*! are i.i.d. standard normal:

w = ~ N (0’ In+1)

L Wy

The following system describes the (n + 1) x 1 random vector X that interests us:

% Ho] o, 0 - 0 o Wy

Y2 He 0 o, = 0 o4 Wa
X=1]: |=|: |+]| P Eo

Yn Ho 0 0 - 0y Op Wy,

0 Mo 0 0 - 0 oy W11

or equivalently,

X:/’L91n+1 +Dw

226 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

where X = {Z] , 1,1 isa vector of 1s of size n + 1, and D is an n + 1 by n + 1 matrix.

Let’s define a Python function that constructs the mean p and covariance matrix X of the random vector X that we know
is governed by a multivariate normal distribution.

As arguments, the function takes the number of tests n, the mean y, and the standard deviation o, of the IQ distribution,
and the standard deviation of the randomness in test scores Ty

def construct_moments_IQ(n, u6, o6, oy):
p_I0 = np.full(n+l, pob)

D_IQ = np.zeros((nt+tl, n+l))
D_IQ[range(n), range(n)] = oy
D_IQ[:, n] = ob

£.IQ = D_IQ @ D_IQ.T

return p_IQ, I_IQ, D_IQ

Now let’s consider a specific instance of this model.
Assume we have recorded 50 test scores and we know that py = 100, oy = 10, and o, = 10.

‘We can compute the mean vector and covariance matrix of X easily with our construct_moments_IQ function as
follows.

n = 50
pé, o6, oy = 100., 10., 10.

p_IQ, Z_IQ, D_IQ = construct_moments_IQ(n, pb, o6, oy)
p_IQ, Z_IQ, D_IQ

(array([(100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,

100., 100., 100., 100., 100., 100., 100.1),
array([[200., 100., 100., ..., 100., 100., 100.],

[100., 200., 100., ..., 100., 100., 100.71,

f100., 100., 200., ..., 100., 100., 100.1,

[100., 00., 100., ..., 200., 100., 100.71,

f100., 100., 100., ..., 100., 200., 100.1,

fro0., 100., 100., ..., 100., 100., 100.11),
array([[10., O0., 0., ..., 0., 0., 10.1,

[Qcop A@o, @op ooog O 0., d0o],

[0., 0., 10., ..., 0., 0., 10.1],

[@cp O @op ocoop A0oy 0., 401,

[0., 0., 0., ..., 0., 10., 10.71,

[0., 0., 0., ..., 0., 0., 10.11))

We can now use our MultivariateNormal class to construct an instance, then partition the mean vector and co-
variance matrix as we wish.

We want to regress 1Q, the random variable 6 (what we don’t know), on the vector y of test scores (what we do know).

We choose k=n so that z; = y and z, = 0.

13.5. One Dimensional Intelligence (1Q) 227

Intermediate Quantitative Economics with Python

multi_normal_TIQ = MultivariateNormal (p_IQ, Z_IOQ)

k =n
multi_normal_TIQ.partition (k)

Using the generator multivariate_normal, we can make one draw of the random vector from our distribution and
then compute the distribution of 6 conditional on our test scores.

Let’s do that and then print out some pertinent quantities.

x = np.random.multivariate_normal (p_IQ, Z_IOQ)
y = x[:-1] # test scores
) x[-1] # IO

the true value

np.float64(99.32998516597584)

The method cond_dist takes test scores y as input and returns the conditional normal distribution of the 1Q 6.
In the following code, ind sets the variables on the right side of the regression.

Given the way we have defined the vector X, we want to set ind=1 in order to make € the left side variable in the
population regression.

ind = 1
multi_normal_TIQ.cond_dist (ind, vy)

(array ([98.22698201]1), array([[1.9607843111]))

The first number is the conditional mean i, and the second is the conditional variance f]@.
How do additional test scores affect our inferences?

To shed light on this, we compute a sequence of conditional distributions of 8 by varying the number of test scores in the
conditioning set from 1 to n.

We'll make a pretty graph showing how our judgment of the person’s IQ change as more test results come in.

array for containing moments
pb_hat_arr = np.empty (n)
r6_hat_arr = np.empty (n)

loop over number of test scores

for i in range(l, n+t+l):
construction of multivariate normal distribution instance
p_IQ i, ¥_I0Q i, D_IQ i = construct_moments_IQ(i, pb, o6, oy)
multi_normal_ TIQ i1 = MultivariateNormal (p_IQ i, Z_IQ_1i)

partition and compute conditional distribution
multi_normal_ TIQ i.partition (i)

scores_i = y[:i]

p6_hat_1i, Z6_hat_i = multi_normal IQ_ i.cond dist (1, scores_i)

store the results
pé_hat_arr[i-1] = pb6_hat_1i[0]
Y6_hat_arr[i-1] = Z6_hat_1i[0, 0]
(continues on next page)

228 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

(continued from previous page)

transform variance to standard deviation
06_hat_arr = np.sqrt (Z6_hat_arr)

p6_hat_lower = p6_hat_arr - 1.96 * o6_hat_arr
p6_hat_higher = p6_hat_arr + 1.96 * o6_hat_arr

plt.hlines (6, 1, n+l, ls='—--', label='true 6")

plt.plot (range (1, n+l1), pb_hat_arr, color='b', label=r'S$\hat

plt.plot (range (1, n+l), pb_hat_lower, color='b', 1ls='--")

plt.plot (range (1, n+l), p6_hat_higher, color='b', ls='--")

plt.fill_between(range(l, n+1l), p6_hat_lower, p6_hat_higher,
color="b', alpha=0.2, label='95%")

plt.xlabel ("'number of test scores')
plt.ylabel (r'S$\hat SE)
plt.legend()

plt.show ()

115 A

110

105

100

L o]

95

90

85

T T
0 10 20 30 40 50
number of test scores

The solid blue line in the plot above shows [i, as a function of the number of test scores that we have recorded and
conditioned on.

The blue area shows the span that comes from adding or subtracting 1.965, from fi,.
Therefore, 95% of the probability mass of the conditional distribution falls in this range.

The value of the random 6 that we drew is shown by the black dotted line.

13.5. One Dimensional Intelligence (1Q) 229

Intermediate Quantitative Economics with Python

As more and more test scores come in, our estimate of the person’s § become more and more reliable.

By staring at the changes in the conditional distributions, we see that adding more test scores makes 6 settle down and
approach 6.

Thus, each y, adds information about 6.

If we were to drive the number of tests n — +o0, the conditional standard deviation &, would converge to 0 at rate %

13.6 Information as Surprise

By using a different representation, let’s look at things from a different perspective.
We can represent the random vector X defined above as
X =pgl, 1 +Ce €e~N(0,1)
where C' is a lower triangular Cholesky factor of ¥ so that
> =DD =CC’
and
FEee' =1.
It follows that
e~ N(0,1).

LetG =C!
G is also lower triangular.
We can compute ¢ from the formula
e=G (X —ppl,yy)
This formula confirms that the orthonormal vector e contains the same information as the non-orthogonal vector
(X — My 1n+1) .
We can say that € is an orthogonal basis for (X — p41,,).
Let ¢, be the ith element in the last row of C'

Then we can write
0= g+ creg +Coey + -+ Cr€, FCpi1€np (13.1)

The mutual orthogonality of the €,’s provides us with an informative way to interpret them in light of equation (13.1).

Thus, relative to what is known from tests ¢ = 1,...,n — 1, ¢;¢; is the amount of new information about 6 brought by
the test number :.

Here new information means surprise or what could not be predicted from earlier information.

Formula (13.1) also provides us with an enlightening way to express conditional means and conditional variances that we
computed earlier.

In particular,

E[G ‘ Y1y - 7yk;} = Mg + C1€q + .. +Ck€k

230 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

and
Var (0| yy, ... yx) = CI%+1 + Cz+2 +oet C’I2L+1'

C = np.linalg.cholesky (Z_IQ)
np.linalg.inv (C)

@
Il

e =G @ (x - ub)

ee = Cm, 8] * &
compute the sequence of p6 and Y6 conditional on yl, y2, ..., yk
n6_hat_arr C = np.array([np.sum(ce[:k+1]) for k in range(n)]) + nbé

£6_hat_arr C = np.array([C[n, i+l:n+1] @ C[n, i+1:n+1] for i in range(n)])

To confirm that these formulas give the same answers that we computed earlier, we can compare the means and variances
of @ conditional on {y, }*_, with what we obtained above using the formulas implemented in the class Multivari-
ateNormal built on our original representation of conditional distributions for multivariate normal distributions.

conditional mean
np.max (np.abs (p6_hat_arr - pb6_hat_arr C)) < le-10

np.True_

conditional variance
np.max (np.abs (Z6_hat_arr - £6_hat_arr_C)) < le-10

np.True_

13.7 Cholesky Factor Magic

Evidently, the Cholesky factorizations automatically computes the population regression coefficients and associated
statistics that are produced by our MultivariateNormal class.

The Cholesky factorization computes these things recursively.
Indeed, in formula (13.1),
« the random variable c;e; is information about 6 that is not contained by the information in €, €5, ..., €;_4

« the coefficient ¢, is the simple population regression coefficient of ¢ — 14 on ¢,

13.8 Math and Verbal Intelligence

We can alter the preceding example to be more realistic.

There is ample evidence that IQ is not a scalar.

Some people are good in math skills but poor in language skills.
Other people are good in language skills but poor in math skills.

So now we shall assume that there are two dimensions of 1Q, 6 and 7.

These determine average performances in math and language tests, respectively.

13.7. Cholesky Factor Magic 231

Intermediate Quantitative Economics with Python

We observe math scores {y, }7; and language scores {y; }7", ..

When n = 2, we assume that outcomes are draws from a multivariate normal distribution with representation

U1 Mo g y 0 0 0 o) 0 wq
y2 1% 0 0 g y O O g) 0 'LU2
x| Vs || M n o 0 o 0 0 o Wy
Yy Hy, o 0 0 o, 0 o Wy
0 P 0 0 0 0 g O W
n oy 6o 0 0 0 0 o W
wy
where w ui2 is a standard normal random vector.
Weg

We construct a Python function construct_moments_IQ2d to construct the mean vector and covariance matrix of
the joint normal distribution.

def construct_moments_IQ2d(n, ub, o6, un, on, oy):

P_IQ2d = np.empty (2* (n+1))
p_IQ2d[:n] = pb
p_I02d[2*n] = ub
p_IQ2d[n:2*n] = un
p_IQ2d[2*n+1l] = un

D_IQ2d = np.zeros((2*(n+l), 2*(n+l)))
D_IQ2d[range(2*n), range(2*n)] = oy
D_IQ2d[:n, 2*n] = oB

D_IQ2d[2*n, 2*n] = o6
D_IQ2d[n:2*n, 2*n+l1] = on
D_IQ2d[2*n+l, 2*n+l1l] = on

r_IQ2d = D_IQ2d @ D_IQ2d.T

return p_IQ2d, ¥_IQ2d, D_IQ2d

Let’s put the function to work.

n =2
mean and variance of 6, n, and y
pwe, o6, un, on, oy = 100., 10., 100., 10, 10

p_I02d, ¥_IQ2d, D_IQ2d = construct_moments_IQ2d(n, pub, ©6, un, on, oy)
p_IQ2d, £_IQ2d, D_IQ2d

(array(([100., 100., 100., 100., 100., 100.1),
array ([[200., 100., Oag 0op L£00., 0],
100., 200., OFy 0op £00c, 0.]
ORy Oop 200., 400, 0., 100.1,
Oag 0op 100, 200, 0., 100.71,
]
]

4

100., 100., 0. 0op £00c, 0.

~

1),

, 100., 0., 100.
array([[10., 0., O., 0., 10., 0.1,
0., 10., 0., 0., 10., 0.1,
0., 0., 10., 0., 0., 10.71,

(continues on next page)

232 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

(continued from previous page)

take one draw
x = np.random.multivariate_normal (p_IQ2d, ¥_IQ2d)

yl = x[:n]
y2 = x[n:2*n]
B = x[2*n]

n = x[2*n+1]

the true values
8, n

(np.float64(101.0011073423411), np.float64(91.47480944085943))

We first compute the joint normal distribution of (6, 7).

multi normal_ IQ2d = MultivariateNormal (p_IQ2d, ¥_IQ2d)

k = 2*n # the length of data vector
multi_normal_TIQ2d.partition (k)

multi_normal_TIQ2d.cond_dist (1, [*yl, *y2])

(array ([106.71593263, 92.00542404]),
array ([[33.33333333, O. 1z
[0. , 33.3333333311))

Now let’s compute distributions of # and p separately conditional on various subsets of test scores.

It will be fun to compare outcomes with the help of an auxiliary function cond_dist_IQ2d that we now construct.
def cond_dist_IQ2d(up, Z, data):
n = len(p)

multi_normal = MultivariateNormal (p,)
multi_normal.partition(n-1)
p_hat, Z_hat = multi_normal.cond_dist (1, data)

return p_hat, I_hat

Let’s see how things work for an example.

*range(2*n), 2*n], '6', 'yi, v2, y3, y4'),
*range(n), 2*n], '6', 'yi1l, vy2'),

*range (n, 2*n), 2*n], '6', 'y3, v4'),
*range(2*n), 2*n+1], 'nn', 'vi, v2, y3, y4'),
*range(n), 2*n+1], 'n', 'yl, vy2'),

*range (n, 2*n), 2*n+1], 'n', 'y3, v4')]l:

for indices, IQ, conditions in |

p_hat, ¥_hat = cond_dist_IQ2d(p_IQ2d[indices], Z_IQ2d[indices][:, indices], .
X [indices[:-1]1)
print (f'The mean and variance of {IQ} conditional on {conditions: <15} are ' +
f'{p_hat[0]:1.2f} and {Z_hat[0, 0]:1.2f} respectively')

13.8. Math and Verbal Intelligence 233

Intermediate Quantitative Economics with Python

The mean and variance of 6 conditional on yl1, y2, v3, y4 are 106.72 and 33.33.

wrespectively

The mean and variance of 6 conditional on yl, y2 are 106.72 and 33.33.
wrespectively

The mean and variance of 6 conditional on y3, y4 are 100.00 and 100.00.
wsrespectively

The mean and variance of n conditional on yl, y2, y3, y4 are 92.01 and 33.33.
srespectively

The mean and variance of n conditional on yl, y2 are 100.00 and 100.00.
wrespectively

The mean and variance of n conditional on y3, y4 are 92.01 and 33.33.
wsrespectively

Evidently, math tests provide no information about 1 and language tests provide no information about 7.

13.9 Univariate Time Series Analysis

We can use the multivariate normal distribution and a little matrix algebra to present foundations of univariate linear time
series analysis.

Let zy, 4y, v;, w,,, €ach be scalars for ¢ > 0.
Consider the following model:
zy ~ N (0,02)
Ti =Ty +bwyy, wey ~N(0,1),6=0
Yy, =cxy +dv, v, ~N(0,1),t>0

We can compute the moments of z;
1. Bz} | = a®Ex} + b*,t > 0, where Exd = o}
2. Fxy o, = a/Ex?, vVt Vj
Given some T', we can formulate the sequence {z,}_, as a random vector

Lo
T
X = 1
L

and the covariance matrix ¥, can be constructed using the moments we have computed above.

Similarly, we can define

Yo Yo
y=| 9|, ="
Yr U
and therefore
Y=CX+ DV

where C' and D are both diagonal matrices with constant ¢ and d as diagonal respectively.

Consequently, the covariance matrix of Y is

¥, =EYY =C%,C"+ DD’

234 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

By stacking X and Y, we can write

X
7= 7]
and
’/ Ex EI’C’/
Y, =FZ7 = { cs, Zy }

Thus, the stacked sequences {z,}7_, and {y,}L_, jointly follow the multivariate normal distribution N (0,3,).

as an example, consider the case where T = 3
T =3

variance of the initial distribution x_0
c0 = 1.

parameters of the equation system
a=.9

b =1.
c=1.0
d = .05

construct the covariance matrix of X
Ix = np.empty ((T+1, T+1))

rx[0, 0] = o0 ** 2
for i in range(T):

Ix[i, i+1:] = Zx[i, 1] * a ** np.arange(l, T+1-1)

rx[i+1:, i] = Zx[i, i+1:]

rx[i+1l, i+1] = a ** 2 * ¥x[i, i] + b ** 2

nx
array ([[1. , 0.9 , 0.81 , 0.729 1,

[0.9 , 1.81 , 1.629 , 1.4661 1,
[0.81 , 1.629 , 2.4661 , 2.21949 7],
[0.729 , 1.4661 , 2.21949 , 2.997541]11])

construct the covariance matrix of Y
np.eye(T+1) * ¢
np.eye (T+1) * d

Q
Il

D

Jy = C @ 3x @ C.T + D @ D.T

construct the covariance matrix of Z
Yz = np.empty ((2* (T+1), 2*(T+1)))

nz[:T+1, :T+1] = Ix
Xz[:T+1, T+1:] = x @ C.T
nz[T+1:, :T+1] = C @ Ix
rz[T+1:, T+1l:] = Zy

13.9. Univariate Time Series Analysis

235

Intermediate Quantitative Economics with Python

array ([[1.
.81
[O.
.629

[0.

[0.

9

81

.4661

729

.21949
L4 o
.81
[0.
.629
[0
.4686
[@c
.21949

9

81

729

’

WERPr NP PP OONRENRER P OO

.9 , 0.81
.729 1,

.81 , 1.629
L4661 1,

.629 , 2.4661
.21949 1,

L4661 , 2.21949
.9975417,

.9 , 0.81
L7291,

.81 , 1.629
L4661 1,

.629 , 2.4661
.21949 1,

L4661 , 2.21949
.0000417117)

construct the mean vector of Z
uz = np.zeros (2* (T+1))

4

14

14

’

.729 g & , 0.9 '
.4661 , 0.9 , 1.81 7
.21949 , 0.81 p dboBAY 7

.997541, 0.729 , 1.4661 ,

.729 p 40028 , 0.9 7
.4661 , 0.9 p 4o8IAY 4
.21949 , 0.81 , 1.629 7

.997541, 0.729 , 1.4661 ,

The following Python code lets us sample random vectors X and Y.

This is going to be very useful for doing the conditioning to be used in the fun exercises below.

z = np.random.multivariate_normal (pz,
X = [:T+1]
y = z[T+1:]

13.9.1 Smoothing Example

xz)

This is an instance of a classic smoothing calculation whose purpose is to compute EX | Y.

An interpretation of this example is

« X is a random sequence of hidden Markov state variables x,

« Y is a sequence of observed signals y, bearing information about the hidden state

construct a MultivariateNormal instance
multi_normal_exl

x = z[:T+1]

y = z[T+1:

]

MultivariateNormal (nz,

partition Z into X and Y
multi_normal_exl.partition(T+1)

nz)

compute the conditional mean and covariance matrix of X given Y=y

print ("X =
print ("Y
print (" E

n
14

[

’

X

X)
y)
|

multi_normal_exl.cond_dist (0, vy)

236

Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

X = [1.09681708 0.79029581 -0.1729975
Y = [1.09951706 0.81426364 -0.2343797
E[X | Y] =

(array ([1.09638412, 0.81253649, -0.229

48875094e-03,

2o 5.57449314e-06,
5.57449314e-06,
4o

2

2.48876343e-03,
5.57452116e-06,
1.25113941e-08,

array ([

24861729e-08,

[
[
[
[2.80235835e-11,

13.9.2 Filtering Exercise

0.75643851]
4 0.71745269]

90214,
1.24861729e-08,
5.57452116e-06,
2.48876346e-03,
5.58575339e-06,

0.7151475471),
2o

80235835e-11],

1.25113941e-087,
Bo
2.49377812e-0311))

58575339e-061,

Compute E [z, | Y;_1, Y2, -+ Yol-
To do so, we need to first construct the mean vector and the covariance matrix of the subvector [, Yo, --- , Ys_9, Ys_1]-
For example, let’s say that we want the conditional distribution of 5.
t =3
mean of the subvector
sub_pz = np.zeros (t+1)
covariance matrix of the subvector
sub_ZXz = np.empty ((t+1, t+1))
sub_%z[0, 0] = Zz[t, t] # x_ ¢t
sub_zz [0, 1:] = Zz[t, T+1:T+t+1]
sub_Y¥z[l:, 0] = Zz[T+1:T+t+1, t]
sub_¥z[1l:, 1:] = Zz[T+1:T+t+1, T+1:T+t+1]
sub_xz
array ([[2.997541, 0.729 , 1.4661 , 2.21949],
[0.729 , 1.0025 , 0.9 , 0.81]
[1.4661 , 0.9 , 1.8125 , 1.629 1
[2.21949 , 0.81 , 1.629 , 2.4686 11)
multi_normal_ex2 = MultivariateNormal (sub_pz, sub_xz)
multi_normal_ex2.partition (1)
sub_y = y[:t]
multi_normal_ex2.cond_dist (0, sub_y)
(array ([-0.20877445]), array([[1.00201996]1]))
13.9. Univariate Time Series Analysis 237

Intermediate Quantitative Economics with Python

13.9.3 Prediction Exercise

Compute E [y, | y;_j» - o]

As what we did in exercise 2, we will construct the mean vector and covariance matrix of the subvector
[ytayOa"'aytfjflaytfj]'

For example, we take a case in which t = 3 and j = 2.

T =
j =2
sub_pz = np.zeros(t-j+2)

sub_Xz = np.empty ((t-J+2, t-j+2))

sub_%z[0, 0] = Zz[T+t+1, T+t+1]

sub_Xz [0, 1:] = Zz[T+t+1, T+1:T+t-j+2]
sub_%z[1l:, 0] = Zz[T+1:T+t-j+2, T+t+1]
sub_Xz[1l:, 1:] = Zz[T+1:T+t-j+2, T+1:T+t-j+2]
sub_xz

array ([[3.000041, 0.729 , 1.4661 1,
[0.729 p 40028 ,; 0.9 1y
[1.4661 , 0.9 , 1.8125 1])

multi_normal_ex3 = MultivariateNormal (sub_pz, sub_zz)
multi_normal_ex3.partition (1)

sub_y = y[:t-j+1]

multi_normal_ex3.cond_dist (0, sub_y)

(array ([0.65990196]), array([[1.81413617]11))

13.9.4 Constructing a Wold Representation
Now we'll apply Cholesky decomposition to decompose ¥, = H H' and form
e=H'Y.
Then we can represent y, as
Y = ht,tet + ht,t715t71 +oee ht,060~
H = np.linalg.cholesky (Zy)

H

array ([[1.00124922, O. 0 ©c o ©c 1,
[0.8988771 , 1.00225743, 0. , O. 1,
[0.80898939, 0.89978675, 1.00225743, 0. 1,
[0.72809046, 0.80980808, 0.89978676, 1.00225743]1])

238 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

e = np.linalg.inv(H) @ vy

array ([1.09814523, -0.17244469, -0.96542476, 0.92414096])

array ([1.09951706, 0.81426364, -0.23437974, 0.717452691])

This example is an instance of what is known as a Wold representation in time series analysis.

13.10 Stochastic Difference Equation

Consider the stochastic second-order linear difference equation
Yp = Qg+ Q1Yy_ 1 + QYo T U

where u, ~ N (0,02) and

] G3y)

It can be written as a stacked system

1 0 0 0 0 0 0 Y1 oy + Yy + oy
-0y 1 0 0 0 0 0 Yo g + QoY
—qy, —Oy 1 0 0 0 0 ys | o
0 —ay, —aq 1 0 0 O yg | Qg
0 0 0 0 -0y —ay 1 Y g
=A =b
We can compute y by solving the system
y=A"(b+u)
We have
ty = A",
Sy =AE [(b—py +u) (b—py+u)| (A7)
= A1 (5 +3,) (4
where

O+ Qo fly = Qpfly
o7} + a2/'[/y0
Hy = Qg
Qo
4
¥, = CE;C" Oy gun—2 }7 C = [Qa }

On_2x2 On_oxn—2 0 ay

13.10. Stochastic Difference Equation

239

Intermediate Quantitative Economics with Python

o2 0 0
0 o2 0
¥, = h
0 O a2
set parameters
T = 80
T = 160
coefficients of the second order difference equation
a0 = 10
al = 1.53
@2 = =.9

variance of u
ocu = 1.
ou = 10.

distribution of y_{-1} and y_{0}

py_tilde = np.array([1l., 0.5])
Yy_tilde = np.array([[2., 1.], [1., 0.5]11])

construct A and A"{\prime}
A = np.zeros((T, T))

for i in range(T):
Ali, i] = 1

if i-1 >= 0:
Ali, i-1] = -al

if 1i-2 >= 0:
Ali, i-2] = -a2

A_inv = np.linalg.inv (A)

compute the mean vectors of b and y

pb = np.full(T, a0)

pb[0] += al * py_tilde[1l] + a2 * py_tilde[O0]
pb[1] += a2 * py_tilde[1]

py = A_inv @ pb

compute the covariance matrices of b and y
Zu = np.eye(T) * cu ** 2

b = np.zeros((T, T))

C = np.array([[a2, al], [0, a2]])
tb[:2, :2] = C @ Zy_tilde @ C.T

Yy = A_inv @ (Zb + Zu) @ A_inv.T

240 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

13.11 Application to Stock Price Model

Let
T—t)
pt:ZBij-j
=0
Form
P1 1 g p*oe pit Y1
Y2 01 g - pr2 Yo
ps =100 1 .. g3 Ys
pr 00 0 — 1 yr
=p =B
we have
tp = B,
Zp =:l32yly
B = .96
construct B
B = np.zeros ((T, T))
for i in range(T):
B[i, i:] = B ** np.arange (0, T-1)
Denote
_ly | _ |1
=315
-
=D

Thus, {y,}Z, and {p,}L, jointly follow the multivariate normal distribution N (u,,Y,), where
p, = D,
%, = D3, D/

D = np.vstack([np.eye(T), BIl)

pz = D € ny
Yz =D @ Zy @ D.T

We can simulate paths of y, and p, and compute the conditional mean F [p, | y,_1,y;] usingthe MultivariateNor—
mal class.

z = np.random.multivariate_normal (pz, %z)
v, p = z[:T], z[T:]

13.11. Application to Stock Price Model 241

Intermediate Quantitative Economics with Python

cond_Ep = np.empty(T-1)

sub_p = np.empty (3)
sub_% = np.empty ((3, 3))
for t in range (2, T+1):
sub_p[:] = pz([[t-2, t-1, T-1+t]]
sub_%[:, :] = ¥z[[t-2, t-1, T-1+t], =:1[:, [t—-2, t-1, T-1+t]]

multi_normal = MultivariateNormal (sub_p, sub_Z)
multi_normal.partition(2)

cond_Ep[t-2] = multi_normal.cond_dist (1, y[t-2:t])[0][0]
plt.plot(range(l, T), yl[l:]1, label='Sy {t}$")
plt.plot (range(l, T), yl[:-1], label='Sy_ {t-1}$")
plt.plot (range (1, T), pll:]1, label='Sp_ {t}s$")
plt.plot (range(l, T), cond_Ep, label='SEp_{t}ly_{t}, y_{t-1}s$")

plt.xlabel ('t")
plt.legend(loc=1)

plt.show ()
- ¥t
8007 — Yt-1
— pt
— Ept|yt, ¥i-1
600
400 A
200
0_

T T T T
0 20 40 60 80 100 120 140 160

In the above graph, the green line is what the price of the stock would be if people had perfect foresight about the path
of dividends while the green line is the conditional expectation Ep,|y,, y,_;, which is what the price would be if people
did not have perfect foresight but were optimally predicting future dividends on the basis of the information y,, y,_; at
time ¢.

242 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

13.12 Filtering Foundations

Assume that z, is an n x 1 random vector and that y, is a p x 1 random vector determined by the observation equation
Yo = Gz + vy, w9~ N(Zo,Eg), vy~ N(0,R)

where v, is orthogonal to z, G is a p X n matrix, and R is a p X p positive definite matrix.
We consider the problem of someone who
« observes

« does not observe z,

o knows Z, ¥y, G, R and therefore the joint probability distribution of the vector BO]
0

» wants to infer z, from ¥, in light of what he knows about that joint probability distribution.
Therefore, the person wants to construct the probability distribution of x, conditional on the random vector y,,.
To

The joint distribution of {y
0

] is multivariate normal N (1, 3) with

Zo I G
= S = ’
Gz, GY, GY,G'+R

By applying an appropriate instance of the above formulas for the mean vector ji; and covariance matrix flu of z;

~

conditional on z,, we find that the probability distribution of x, conditional on y, is NV (%, 3,) where

By = TyG'(GZ,G’' + R)™!
To = To + Bo(yo — Giy)
S =3, — 5, (GS,G’ + R)LG%,
We can express our finding that the probability distribution of z, conditional on y is N (Z,, io) by representing x, as
2 = Fo+ G (132)
where ¢ is a Gaussian random vector that is orthogonal to Z, and y,, and that has mean vector 0 and conditional covariance

matrix E[¢y¢hlye] = Eo-

13.12.1 Step toward dynamics
Now suppose that we are in a time series setting and that we have the one-step state transition equation
xy = Axg+ Cwy, wy ~ N(0,I)

where A is an n X n matrix and C'is an n X m matrix.

Using equation (13.2), we can also represent x; as
xy = ATy + Go) + Cwy
It follows that

Ex|y, = A%,

13.12. Filtering Foundations 243

Intermediate Quantitative Economics with Python

and that the corresponding conditional covariance matrix E(x; — Ex4|yy) (21 — Exqlyy) = 3 is
%, = AS A +CC’

or

¥, =AY A" — ASG'(GEZ,G' + R)1GE A’
We can write the mean of =, conditional on y, as

T, = AZy + AX (G (GE G’ + R) H(y, — GZy)
or

Ty = Ay + Ko(yo — Gy)

where

K, = AS,G' (GG + R)™

13.12.2 Dynamic version

Suppose now that for ¢t > 0, {z,,;, y, }$2, are governed by the equations

Tpp = Avy + Cwg gy
Y, = Gz, + v,
where as before z, ~ N(Z(, %), w,,, is the ¢ + 1th component of an i.i.d. stochastic process distributed as w;,; ~

N(0,1), and v, is the tth component of an i.i.d. process distributed as v, ~ N (0, R) and the {w, , }7°, and {v,}°,
processes are orthogonal at all pairs of dates.

The logic and formulas that we applied above imply that the probability distribution of x, conditional on yg, ¥y, ... , Y41 =

yt—l is

2yt ~ N(AZ,, AS, A"+ CC")

where {Z,, it}toil can be computed by iterating on the following equations starting from ¢ = 1 and initial conditions for
Zg, X computed as we have above:

v, = A8, A +CC

T, = A%, ,

8, =%,G'(G%,G" + R)~!

Ty =y + By(y, — GTy)

S, =%, - %,¢(G%,G' + R)'\GY,

If we shift the first equation forward one period and then substitute the expression for it on the right side of the fifth
equation into it we obtain

Sy, = CC’ + AS, A" — AS, G/ (GS,G’ + R)"\GD,A’.

This is a matrix Riccati difference equation that is closely related to another matrix Riccati difference equation that appears
in a quantecon lecture on the basics of linear quadratic control theory.

244 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

That equation has the form
P, =R+ APA— AP,B(B'P,B+ Q) 'B P,A.

Stare at the two preceding equations for a moment or two, the first being a matrix difference equation for a conditional
covariance matrix, the second being a matrix difference equation in the matrix appearing in a quadratic form for an
intertemporal cost of value function.

Although the two equations are not identical, they display striking family resemblences.
« the first equation tells dynamics that work forward in time
« the second equation tells dynamics that work backward in time

« while many of the terms are similar, one equation seems to apply matrix transformations to some matrices that play
similar roles in the other equation

The family resemblences of these two equations reflects a transcendent duality that prevails between control theory and
filtering theory.

13.12.3 An example

We can use the Python class MultivariateNormal to construct examples.

Here is an example for a single period problem at time 0

G = np.array([[1., 3.11)
R = np.array([[1.]])

x0_hat = np.array([0., 1.1])
r0 = np.array([[1., .51, [.3, 2.11)

Bu = np.hstack ([x0_hat, G @ x0_hat])
X np.block([[Z0, Z0 @ G.T], [G @ £0, G @ Z0O @ G.T + RJ]])

construction of the multivariate normal instance
multi_normal = MultivariateNormal (p, IZ)

multi_normal.partition (2)

the observation of y
y0 = 2.3

conditional distribution of x0
pl_hat, £11 = multi_normal.cond_dist (0, yO0)
nl_hat, z11

(array ([-0.078125, 0.803125]),
array ([[0.72098214, -0.203125 1],
[-0.403125 , 0.228125 11))

A = np.array([[0.5, 0.2],
C = np.array([[2.], [1.11)

conditional distribution of x1
x1_cond = A @ pl_hat

(continues on next page)

13.12. Filtering Foundations 245

Intermediate Quantitative Economics with Python

(continued from previous page)

%1l cond = C @ C.T + A @ 11 @ A.T
x1_cond, £l1_cond

(array ([0.1215625, 0.24875 1),
array ([[4.12874554, 1.95523214],
[1.92123214, 1.0459285711))

13.12.4 Code for lterating
Here is code for solving a dynamic filtering problem by iterating on our equations, followed by an example.
def iterate(x0_hat, Z0, A, C, G, R, y_seq):
p, n = G.shape

T = len(y_seq)
x_hat_seqg = np.empty ((T+1, n))

Y_hat_seqg = np.empty ((T+1, n, n))
x_hat_seq[0] = x0_hat
Y_hat_seq[0] = Z0

for t in range(T):
xt_hat = x_hat_seq[t]
%t = Z_hat_seql[t]
p = np.hstack ([xt_hat, G @ xt_hat])
Y = np.block([[Zt, Zt @ G.T], [G @ Zt, G @ Zt @ G.T + R]1])

filtering

multi_normal = MultivariateNormal (p, IZ)
multi_normal.partition (n)

x_tilde, Z_tilde = multi_normal.cond_dist (0, y_seqgl[t])

forecasting
x_hat_seq[t+l] = A @ x_tilde
Y_hat_seqg[t+1] C@C.T +A @32 tilde @ A.T

return x_hat_seq, ¥_hat_seqg

iterate (x0_hat, %0, A, C, G, R, [2.3, 1.2, 3.21)

(array ([[0 , 1. 1,
[0.1215625 , 0.24875 1,
[0.18680212, 0.06904689],
[0.75576875, 0.05558463]11]),

array ([[[21 , 0.5 1,

[0.3 0 2o 11,

[[4.12874554, 1.95523214],
[1.92123214, 1.04592857]11,

[[4.08198663, 1.99218488],
[1.98640488, 1.0088642311,

(continues on next page)

246 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

(continued from previous page)
[[4.06457628, 2.00041999]

[1.99943739, 1.00275526111))
The iterative algorithm just described is a version of the celebrated Kalman filter.

We describe the Kalman filter and some applications of it in A First Look at the Kalman Filter

13.13 Classic Factor Analysis Model

The factor analysis model widely used in psychology and other fields can be represented as
Y=Af+U

where
1. Y isn x 1 random vector, EUU’ = D is a diagonal matrix,
2. Aisn x k coefficient matrix,
3. fis k x 1random vector, Ef f' =1,
4. Uisn x 1random vector,and U L f (i.e., EUf =0)
5. Itis presumed that % is small relative to n; often & is only 1 or 2, as in our IQ examples.
This implies that
¥, =LEYY' =AN+D
EYf =A
EfY =N
Thus, the covariance matrix ¥y is the sum of a diagonal matrix D and a positive semi-definite matrix AA” of rank k.

This means that all covariances among the n components of the Y vector are intermediated by their common dependencies

on the k < factors.
_(f
i (!

the covariance matrix of the expanded random vector Z can be computed as

, (TN
¥, =BZZ <A AA/+D)

Form

In the following, we first construct the mean vector and the covariance matrix for the case where N = 10 and k£ = 2.

N = 10
k =2

We set the coefficient matrix A and the covariance matrix of U to be

10

Pl o2 0 - 0

10 0 o2 « 0
A=lo | P2

P 0 0 o2

0 1

13.13. Classic Factor Analysis Model 247

Intermediate Quantitative Economics with Python

where the first half of the first column of A is filled with 1s and Os for the rest half, and symmetrically for the second
column.

D is a diagonal matrix with parameter o2 on the diagonal.

A = np.zeros ((N, k))

A[:N//2, 0] =1
A[N//2:, 1] =1
ou = .5

D = np.eye(N) * ou ** 2

compute Sy
Sy = A @ A.T + D

We can now construct the mean vector and the covariance matrix for Z.

pz = np.zeros (k+N)

2z = np.empty ((k+N, k+N))

2z[:k, :k] = np.eye (k)

Yz[:k, k:] = N.T

nzlk:, :k] = 1A

rzlk:, k:] = 2y

z = np.random.multivariate_normal (pnz, Zz)

multi_normal_factor = MultivariateNormal (pz, Zz)
multi_normal_factor.partition (k)

Let’s compute the conditional distribution of the hidden factor f on the observations Y, namely, f | Y = y.

multi_normal_factor.cond_dist (0, vy)

(array ([-0.47685987, -0.26741249]),
array ([[0.04761905, O. 15
[0. , 0.0476190511))

We can verify that the conditional mean E [f | Y = y] = BY where B = A’Y.

B =NA.T @ np.linalg.inv(Zy)

B @y
array ([-0.47685987, -0.26741249])

Similarly, we can compute the conditional distribution Y | f.

multi_normal_factor.cond_dist (1, f)

(array ([-0.62735681, -0.62735681, -0.62735681, -0.62735681, -0.62735681,
-0.23733489, -0.23733489, -0.23733489, -0.23733489, -0.23733489]),
(continues on next page)

248 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

(continued from previous page)

~ 0~ 0~

~

~ 0~

~

~
O O O O O O O o o o
~
~
O O O O O O O O o o
~
N
(&)
~
O O O O O O O o o o
~

~
O O O O O O O o o o
~

~
O O O O O O O o o o
~
N
(6]
~
O O O O O O O o o o
~
~
O O O O O O O o o o
~
O O O O O O O o o o

~
O O O O O O O o o o
~
~

N

It can be verified that the meanis AT~ f = Af.

N @ £

array ([-0.62735681, -0.62735681, -0.62735681, -0.62735681, -0.62735681,
-0.23733489, -0.23733489, -0.23733489, -0.23733489, -0.23733489])

13.14 PCA and Factor Analysis

To learn about Principal Components Analysis (PCA), please see this lecture Singular Value Decompositions.
For fun, let’s apply a PCA decomposition to a covariance matrix X, that in fact is governed by our factor-analytic model.
Technically, this means that the PCA model is misspecified. (Can you explain why?)

Nevertheless, this exercise will let us study how well the first two principal components from a PCA can approximate the
conditional expectations E f;|Y for our two factors f;, i = 1, 2 for the factor analytic model that we have assumed truly
governs the data on Y we have generated.

So we compute the PCA decomposition

B, = PAP’
where A is a diagonal matrix.
We have
Y = Pe
and
e=PY

Note that we will arrange the eigenvectors in P in the descending order of eigenvalues.
A_tilde, P = np.linalg.eigh(Zy)

arrange the eigenvectors by eigenvalues
ind = sorted(range (N), key=lambda x: A_tilde[x], reverse=True)

P = P[:, ind]
A_tilde = A_tilde[ind]
N_tilde = np.diag(A_tilde)

print ('A_tilde ="', A_tilde)

13.14. PCA and Factor Analysis 249

Intermediate Quantitative Economics with Python

A_tilde = [5.25 5.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25]

verify the orthogonality of eigenvectors
np.abs(P @ P.T — np.eye(N)) .max ()

np.float64(4.440892098500626e-16)

verify the eigenvalue decomposition is correct
P @ A _tilde @ P.T

array ([[1.25, 1 , 1 , 1 , 1 , 0 , 0 , 0. , 0 , 0 1,
(2. , 1.25, 1. , 1 p 4 , 0 , 0 , 0. , O , 0]
1. , 1 , 1.25, 1 g 4 , 0 , 0 g 0o ; © g © 1,
.. , 1. , 1. , 1.2, 1. , 0. , 0. , 0. , 0. , 0. 1,
(1. , 1 p 4 o 4 , 1.25, 0 , 0 , 0. , O , 0]
[0. , 0 p © , 0 , 0 p 1.285; 4o o, 4o , 4 , 1 1,
[o. , 0 , 0 , 0 , O , 1 p Lo28; o , 4 o 4 1
[0. , 0 , 0 , 0 , 0 PR p 4 , 1.25, 1 PR]
[0. , 0 p © , 0 , 0 , 1 p p Lo o 4:285; ,
[o. , O , 0 , 0 , 0 , 1 p d p 1o g 4 , 1.25]7)
e =P.T @y
print ("e = ", ¢€)
e = [-1.11960564 -0.62785014 0.44778787 —-0.44274767 0.61840341 -0.59434214

-0.43167556 0.69375912 -0.27956922 0.15206337]

print the values of the two factors

print('f = ', £f)
f = [-0.62735681 -0.23733489]

Below we'll plot several things
« the N values of y
« the [V values of the principal components ¢

« the value of the first factor f, plotted only for the first NV /2 observations of y for which it receives a non-zero
loading in A

o the value of the second factor f, plotted only for the final N /2 observations for which it receives a non-zero loading
in A

plt.scatter (range(N), y, label='y")
plt.scatter (range(N), e, label=r'S\epsilon$')

plt.hlines (£[0], 0, N//2-1, 1ls='—--"', label='Sf_ S')
plt.hlines(f[1], N//2, N-1, 1ls='-."', label='Sf_ SV
plt.legend ()

plt.show ()

250 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

0.75 -
o v
£
0.50 - e &
—— ﬁ
0.25 -
L] L]
L]
0.00 - °
L]
D.ES — i — i — — — — i — — —
~0.50 - °
—0.75 1 ° o
—1004 ©
L]
T T T T T
0 2 4 6 8

Consequently, the first two €; correspond to the largest two eigenvalues.

Let’s look at them, after which we’ll look at E f|y = By

e[:2]
array ([-1.11960564, -0.62785014])

compare with Ef|y
B @y

array ([-0.47685987, -0.26741249])

The fraction of variance in y, explained by the first two principal components can be computed as below.

A_tilde[:2] .sum() / A_tilde.sum{()
np.float64 (0.84)

Compute
Y = Pj6] + Pkek
where P; and P, correspond to the largest two eigenvalues.
y_hat = P[:, :2] @ e[:2]
In this example, it turns out that the projection Y of Y on the first two principal components does a good job of approx-
imating Ef | y.

We confirm this in the following plot of f, E'y | f, Ef | y, and § on the coordinate axis versus y on the ordinate axis.

13.14. PCA and Factor Analysis 251

Intermediate Quantitative Economics with Python

plt.scatter (range(N), N @ £, label='SEy|f$')
plt.scatter (range (N), y_hat, label=r'$\hat S")

plt.hlines (£[0], 0, N//2-1, 1ls='—-"', label='Sf_ ST
plt.hlines(£[1], N//2, N-1, 1ls='-."', label='Sf_ S
Efy = B @ y
plt.hlines (Efy([0], 0, N//2-1, 1ls='—--', color='b', label='SEf_ ly$")
plt.hlines (Efy[1], N//2, N-1, 1ls='-.', color='b', label='SEf_ ly$"')
plt.legend()
plt.show ()
- ——y— ———
—0.25 4 L EY|f
y s e s e b e B B 55
-0.309 --- f
=—c= ﬁ
—0.35 4
——- Efily
—-- Ef
—0.40 4 v
—0.45
—0.50
—0.55
—0.60
*r-———0-——-————0---0
T T T T T
0 2 4 6 8

The covariance matrix of Y can be computed by first constructing the covariance matrix of € and then use the upper left
block for €; and e,.

rejk = (P.T @ Zy @ P)[:2, :2]
PIR = Ps, 82]

Sy_hat = Pjk @ Zejk @ P3k.T
print ('Zy_hat = \n', Zy_hat)

ry_hat =
[[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0.]
[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0.]
[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0.]
[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0.]
[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0.]
[0. 0 0. 0. 0. 1.05 1.05 1.05 1.05 1.05]

(continues on next page)

252 Chapter 13. Multivariate Normal Distribution

Intermediate Quantitative Economics with Python

ceer
eeer
eeer
°eer

e

.05
.05
0S5
.05

e

.05
.05
105
.05

e

.05
.05
.05
.05

B e

.05
.05
.05
.05

e

(continued from previous page)

13.14. PCA and Factor Analysis

253

Intermediate Quantitative Economics with Python

254 Chapter 13. Multivariate Normal Distribution

CHAPTER
FOURTEEN

FAULT TREE UNCERTAINTIES

14.1 Overview

This lecture puts elementary tools to work to approximate probability distributions of the annual failure rates of a system
consisting of a number of critical parts.

We'll use log normal distributions to approximate probability distributions of critical component parts.

To approximate the probability distribution of the sum of » log normal probability distributions that describes the failure
rate of the entire system, we'll compute the convolution of those n log normal probability distributions.

We'll use the following concepts and tools:
« log normal distributions
« the convolution theorem that describes the probability distribution of the sum independent random variables

« fault tree analysis for approximating a failure rate of a multi-component system

a hierarchical probability model for describing uncertain probabilities

« Fourier transforms and inverse Fourier tranforms as efficient ways of computing convolutions of sequences
For more about Fourier transforms see this quantecon lecture Circulant Matrices as well as these lecture Covariance
Stationary Processes and Estimation of Spectra.

El-Shanawany, Ardron, and Walker [El-Shanawany ef al., 2018] and Greenfield and Sargent [Greenfield and Sargent,
1993] used some of the methods described here to approximate probabilities of failures of safety systems in nuclear
facilities.

These methods respond to some of the recommendations made by Apostolakis [Apostolakis, 1990] for constructing
procedures for quantifying uncertainty about the reliability of a safety system.

We'll start by bringing in some Python machinery.

'pip install tabulate

Requirement already satisfied: tabulate in /home/runner/miniconda3/envs/quantecon/
~1lib/python3.13/site-packages (0.9.0)

import numpy as np

import matplotlib.pyplot as plt

from scipy.signal import fftconvolve
from tabulate import tabulate

import time

255

https://python.quantecon.org/eig_circulant.html
https://python-advanced.quantecon.org/arma.html
https://python-advanced.quantecon.org/arma.html
https://python-advanced.quantecon.org/estspec.html

Intermediate Quantitative Economics with Python

np.set_printoptions (precision=3, suppress=True)

14.2 Log normal distribution

If a random variable x follows a normal distribution with mean and variance o2, then the natural logarithm of x, say
y = log(x), follows a log normal distribution with parameters 1, 2.

Notice that we said parameters and not mean and variance /i, 0.

o pand o2 are the mean and variance of x = exp(y)

« they are not the mean and variance of y

« instead, the mean of is **2°” and the variance of y is (7" — 1)e2/+o”
A log normal random variable y is nonnegative.

The density for a log normal random variate y is

1
= ex
yov 2w P (202
fory > 0.

Important features of a log normal random variable are

mean: ettzo°
variance: (e” — 1)e2nto”
median: e*
mode: eH—”

.95 quantile: e+ t1-6450

.95-.05 quantile ratio: e!-64%7

Recall the following stability property of two independent normally distributed random variables:

If z; is normal with mean 4, and variance 0% and z, is independent of x; and normal with mean /1, and variance o3,
then 2, + 2, is normally distributed with mean pi; + ji5 and variance o7 + o3.

Independent log normal distributions have a different stability property.
The product of independent log normal random variables is also log normal.

In particular, if y, is log normal with parameters (1, 0%) and y, is log normal with parameters (115, 03), then the product
1Yo is log normal with parameters (pt; + jiy, 05 + 03).

© Note

While the product of two log normal distributions is log normal, the sum of two log normal distributions is not log
normal.

This observation sets the stage for challenge that confronts us in this lecture, namely, to approximate probability distri-
butions of sums of independent log normal random variables.

To compute the probability distribution of the sum of two log normal distributions, we can use the following convolution
property of a probability distribution that is a sum of independent random variables.

256 Chapter 14. Fault Tree Uncertainties

Intermediate Quantitative Economics with Python

14.3 The Convolution Property

Let x be a random variable with probability density f(x), where z € R.
Let y be a random variable with probability density g(y), where y € R.
Let x and y be independent random variables and let z = z + y € R.

Then the probability distribution of z is

hz) = (F*g)(z) = / f(2)g(z —7)dr

where (f % g) denotes the convolution of the two functions f and g.

If the random variables are both nonnegative, then the above formula specializes to

hz) = (f*g)(z) = / f(2)g(z —7)dr

Below, we'll use a discretized version of the preceding formula.

In particular, we'll replace both f and g with discretized counterparts, normalized to sum to 1 so that they are probability
distributions.

« by discretized we mean an equally spaced sampled version

Then we'll use the following version of the above formula

hy = (f*9)0 =D fnbn-mn 20

m=0

to compute a discretized version of the probability distribution of the sum of two random variables, one with probability
mass function f, the other with probability mass function g.

Before applying the convolution property to sums of log normal distributions, let’s practice on some simple discrete
distributions.

To take one example, let’s consider the following two probability distributions
f; =Prob(X =j),j=0,1
and
g; =Prob(Y =j),7=0,1,2,3
and
h;=Prob(Z=X+Y =j),j=0,1,2,3,4
The convolution property tells us that
h=fxg=gxf

Let’s compute an example using the numpy . convolve and scipy.signal.fftconvolve.

14.3. The Convolution Property 257

Intermediate Quantitative Economics with Python

f = 1[.75, .25]
g = [0., .6, 0., .4]
h = np.convolve (£, g)
hf = fftconvolve (£, g)
print("f = ", £, ", np.sum(f) =", np.sum(f))
print("g =", g, ", np.sum(g) = ", np.sum(g))
print ("h = ", h, ", np.sum(h) = ", np.sum(h))
print ("hf = ", hf, ",np.sum(hf) = ", np.sum(hf))
f = [0.75, 0.25] , np.sum(f) = 1.0
g = [0.0, 0.6, 0.0, 0.4] , np.sum(g) = 1.0
h = [O. 0.45 0.15 0.3 0.1 1 , np.sum(h) = 1.
hf = [O. 0.45 0.15 0.3 0.1] ,np.sum(hf) =

0

1.0000000000000002

A little later we'll explain some advantages that come from using scipy.signal . ftconvolve rather than numpy .
convolve.numpy program convolve.

They provide the same answers but scipy.signal.ftconvolve is much faster.

That’s

why we rely on it later in this lecture.

14.4 Approximating Distributions

We'll construct an example to verify that discretized distributions can do a good job of approximating samples drawn
from underlying continuous distributions.

We'll start by generating samples of size 25000 of three independent log normal random variates as well as pairwise and
triple-wise sums.

Then we'll plot histograms and compare them with convolutions of appropriate discretized log normal distributions.

create sums of two and three log normal random variates ssum2 =

o=

mul,

sl =

mu2,

s2 =

mu3,

s3 =

ssum2 =

ssum3 =

count,

sl + s2 + s3

mean and standard deviation
sigmal, 25000)

sigmal = 5., 1.
np.random. lognormal (mul,

mean and standard deviation
sigmaz2, 25000)

sigmaz2 = 5., 1.
np.random. lognormal (mu2,

mean and standard deviation
sigma3, 25000)

sigma3 = 5., 1.
np.random. lognormal (mu3,
sl + s2
sl + s2 + s3
bins, 1000,

ignored = plt.hist(sl,

density=True,

sl + s2 and ssum3.

align="mid")

258

Chapter 14. Fault Tree Uncertainties

Intermediate Quantitative Economics with Python

0.004 ~

0.003 ~

0.002 ~

0.001 ~

0.000 - E—— T T T
0 2000 4000 6000 2000

count, bins, ignored = plt.hist (ssum2, 1000, density=True, align='mid')

0.00200

0.00175

0.00150

0.00125 -

0.00100

0.00075

0.00050

0.00025

0.00000 - m T T T
0 2000 4000 6000 8000

14.4. Approximating Distributions 259

Intermediate Quantitative Economics with Python

count, bins, ignored = plt.hist (ssum3, 1000, density=True, align='mid'")

0.0014 +

0.0012 +

0.0010 +

0.0008 +

0.0006

0.0004 -

0.0002 +

* T T
0 2000 4000 6000 8000

0.0000 -

samp_mean2 = np.mean (s2)
pop_mean2 = np.exp (mu2+ (sigma2**2)/2)

pop_mean2, samp_mean2, mu2, sigma?2

(np.float64(244.69193226422038), np.float64(243.36509502270496), 5.0, 1.0)

Here are helper functions that create a discretized version of a log normal probability density function.

def p_log_normal (x,11,0):
p =1/ (o*x*np.sqrt(2*np.pi)) * np.exp(-1/2* ((np.log(x) - n)/o)**2)
return p

def pdf_seq(p,o0,I,m):
x = np.arange (le-7,I,m)
p_array = p_log_normal (x,1,0)
p_array_norm = p_array/np.sum(p_array)
return p_array,p_array_norm,x

Now we shall set a grid length I and a grid increment size m = 1 for our discretizations.

© Note

We set I equal to a power of two because we want to be free to use a Fast Fourier Transform to compute a convolution
of two sequences (discrete distributions).

260 Chapter 14. Fault Tree Uncertainties

Intermediate Quantitative Economics with Python

We recommend experimenting with different values of the power p of 2.

Setting it to 15 rather than 12, for example, improves how well the discretized probability mass function approximates
the original continuous probability density function being studied.

p=15
I = 2**p # Truncation value
m = .1 # increment size

Cell to check ——- note what happens when don't normalize!
things match up without adjustment. Compare with above

pl,pl _norm,x = pdf_seqg(mul,sigmal,I,m)
compute number of points to evaluate the probability mass function
NT = x.size

plt.figure(figsize = (8,8))

plt.subplot(2,1,1)

plt.plot(x[:int (NT)],pl[:int (NT)],label = "")

plt.x1im(0,2500)

count, bins, ignored = plt.hist(sl, 1000, density=True, align='mid')

plt.show ()

0.004

0.003 ~

0.002

0.001

0.000 T T
0 500 1000 1500 2000 2500

Compute mean from discretized pdf and compare with the theoretical value
mean= np.sum(np.multiply (x[:NT],pl_norm[:NT]))

meantheory = np.exp (mul+.5%*sigmal**2)
mean, meantheory

(np.float64(244.69059898302908), np.float64(244.69193226422038))

14.4. Approximating Distributions 261

Intermediate Quantitative Economics with Python

14.5 Convolving Probability Mass Functions

Now let’s use the convolution theorem to compute the probability distribution of a sum of the two log normal random
variables we have parameterized above.

We'll also compute the probability of a sum of three log normal distributions constructed above.
Before we do these things, we shall explain our choice of Python algorithm to compute a convolution of two sequences.

Because the sequences that we convolve are long, we use the scipy.signal.fftconvolve function rather than
the numpy.convove function.

These two functions give virtually equivalent answers but for long sequences scipy.signal.fftconvolve is much
faster.

The program scipy.signal.fftconvolve uses fast Fourier transforms and their inverses to calculate convolu-
tions.

Let’s define the Fourier transform and the inverse Fourier transform.

: -1 ; T-1 g
The Fourier transform of a sequence {x, }; ;" is a sequence of complex numbers {z(w;)}; - given by

T-1

r(w;) = Z z, exp(—iw;t) (14.1)

t=0

where w; = %forj:O,l,...,Tfl.

The inverse Fourier transform of the sequence {z(w;) jT;Ol is
T-1
2, =T a(w,) expliw;t) (14.2)
=0

T-1 T-1 : : :
The sequences {z,};_; and {z(w;)};-; contain the same information.

The pair of equations (14.1) and (14.2) tell how to recover one series from its Fourier partner.

The program scipy.signal.fftconvolve deploys the theorem that a convolution of two sequences { f}.}, {g;}
can be computed in the following way:

« Compute Fourier transforms F'(w), G(w) of the { f,.} and {g;,} sequences, respectively

 Form the product H (w) = F(w)G(w)

« The convolution of f * g is the inverse Fourier transform of H (w)
The fast Fourier transform and the associated inverse fast Fourier transform execute these calculations very quickly.
This is the algorithm that scipy.signal.fftconvolve uses.

Let’s do a warmup calculation that compares the times taken by numpy.convove and scipy.signal.
fftconvolve.

pl,pl_norm,x = pdf_seqg(mul, sigmal,I,m)
p2,p2_norm,x = pdf_seqg(mu2, sigmaz2,I,m)
p3,p3_norm,x = pdf_seg(mu3,sigma3, I,m)

tic = time.perf_counter ()

cl = np.convolve (pl_norm,p2_norm)
c2 np.convolve (cl,p3_norm)

(continues on next page)

262 Chapter 14. Fault Tree Uncertainties

Intermediate Quantitative Economics with Python

(continued from previous page)

toc = time.perf_counter ()

tdiffl = toc - tic

tic = time.perf_counter()

clf = fftconvolve (pl_norm,p2_norm)
c2f = fftconvolve (clf,p3_norm)

toc = time.perf_ counter ()

toc = time.perf_ counter ()

tdiff2 = toc - tic

print ("time with np.convolve = ", tdiffl, ", time with fftconvolve = ", tdiff2)
time with np.convolve = 32.684956974000215 ; time with fftconvolve = 0.
-15972100300041348

The fast Fourier transform is two orders of magnitude faster than numpy . convolve

Now let’s plot our computed probability mass function approximation for the sum of two log normal random variables
against the histogram of the sample that we formed above.

NT= np.size (x)

plt.figure (figsize = (8,8))
plt.subplot (2,1,1)
plt.plot (x[:int (NT)],clf[:int (NT)]/m, label = '")

plt.x1im (0, 5000)

count, bins, ignored = plt.hist (ssum2, 1000, density=True, align='mid'")
plt.plot (P2P3[:10000],label = 'FFT method',linestyle = '—--")

plt.show ()

0.00200
0.00175 +
0.00150 +
0.00125 A
0.00100 +
0.00075 +
0.00050 +

0.00025 +

0.00000 -

o T T T
0 1000 2000 3000 4000 5000

14.5. Convolving Probability Mass Functions 263

Intermediate Quantitative Economics with Python

NT= np.size (x)

plt.figure(figsize = (8,8))

plt.subplot (2,1,1)

plt.plot (x[:int (NT)],c2f[:int (NT)]/m, label = '")
plt.x1im(0,5000)

count, bins, ignored = plt.hist (ssum3, 1000, density=True, align='mid')
plt.plot (P2P3[:10000],label = 'FFT method',linestyle = '—--")

plt.show ()

0.0014

0.0012 A

0.0010

0.0008 A

0.0006

0.0004

- — T T
0 1000 2000 3000 4000

Let's compute the mean of the discretized pdf
mean= np.sum(np.multiply (x[:NT],clf[:NT]))

meantheory = np.exp (mul+.5*%*sigmal**2)

mean, 2*meantheory

(np.float64(489.38109740938546), np.float64(489.38386452844077))

Let's compute the mean of the discretized pdf
mean= np.sum(np.multiply (x[:NT],c2f[:NT]))

meantheory = np.exp (mul+.5%*sigmal**2)

mean, 3*meantheory

(np.float64(734.0714863312278), np.float64(734.0757967926611))

14.6 Failure Tree Analysis

‘We shall soon apply the convolution theorem to compute the probability of a top event in a failure tree analysis.

5000

Before applying the convolution theorem, we first describe the model that connects constituent events to the top end

whose failure rate we seek to quantify.

The model is an example of the widely used failure tree analysis described by El-Shanawany, Ardron, and Walker

[El-Shanawany et al., 2018].

To construct the statistical model, we repeatedly use what is called the rare event approximation.

264 Chapter 14. Fault Tree Uncertainties

Intermediate Quantitative Economics with Python

We want to compute the probabilty of an event A U B.
« the union A U B is the event that A OR B occurs

A law of probability tells us that A OR B occurs with probability

P(AUB)=P(A)+ P(B)— P(AN B)
where the intersection A N B is the event that A AND B both occur and the union A U B is the event that A OR B
occurs.

If A and B are independent, then
P(ANB)= P(A)P(B)

If P(A) and P(B) are both small, then P(A)P(DB) is even smaller.

The rare event approximation is
P(AUB)~ P(A)+ P(B)

This approximation is widely used in evaluating system failures.

14.7 Application

A system has been designed with the feature a system failure occurs when any of n critical components fails.
The failure probability P(A;) of each event A, is small.
We assume that failures of the components are statistically independent random variables.

We repeatedly apply a rare event approximation to obtain the following formula for the problem of a system failure:
P(F) ~ P(Ay) + P(4;) + -+ P(4,)

or
P(F)~) P(4,) (14.3)
i=1

Probabilities for each event are recorded as failure rates per year.

14.8 Failure Rates Unknown

Now we come to the problem that really interests us, following [El-Shanawany ez al., 2018] and Greenfield and Sargent
[Greenfield and Sargent, 1993] in the spirit of Apostolakis [Apostolakis, 1990].

The constituent probabilities or failure rates P(A;) are not known a priori and have to be estimated.

We address this problem by specifying probabilities of probabilities that capture one notion of not knowing the con-
stituent probabilities that are inputs into a failure tree analysis.

Thus, we assume that a system analyst is uncertain about the failure rates P(A;), ¢ = 1, ..., n for components of a system.

The analyst copes with this situation by regarding the systems failure probability P(F’) and each of the component
probabilities P(A,) as random variables.

14.7. Application 265

Intermediate Quantitative Economics with Python

« dispersions of the probability distribution of P(A;) characterizes the analyst’s uncertainty about the failure prob-
ability P(A,;)

« the dispersion of the implied probability distribution of P(F’) characterizes his uncertainty about the probability
of a system’s failure.

This leads to what is sometimes called a hierarchical model in which the analyst has probabilities about the probabilities
P(A4,).

The analyst formalizes his uncertainty by assuming that
« the failure probability P(A;) is itself a log normal random variable with parameters (u;, o;).
« failure rates P(A;) and P(A;) are statistically independent for all pairs with 7 # j.

The analyst calibrates the parameters (1, o) for the failure events ¢ = 1, ..., n by reading reliability studies in engineering
papers that have studied historical failure rates of components that are as similar as possible to the components being
used in the system under study.

The analyst assumes that such information about the observed dispersion of annual failure rates, or times to failure, can
inform him of what to expect about parts’ performances in his system.

The analyst assumes that the random variables P(A,) are statistically mutually independent.

The analyst wants to approximate a probability mass function and cumulative distribution function of the systems failure
probability P(F').

o We say probability mass function because of how we discretize each random variable, as described earlier.

The analyst calculates the probability mass function for the top event F, i.e., a system failure, by repeatedly applying
the convolution theorem to compute the probability distribution of a sum of independent log normal random variables,
as described in equation (14.3).

14.9 Waste Hoist Failure Rate

We'll take close to a real world example by assuming that n = 14.
The example estimates the annual failure rate of a critical hoist at a nuclear waste facility.

A regulatory agency wants the sytem to be designed in a way that makes the failure rate of the top event small with high
probability.

This example is Design Option B-2 (Case I) described in Table 10 on page 27 of [Greenfield and Sargent, 1993].

The table describes parameters ji;, o; for fourteen log normal random variables that consist of seven pairs of random
variables that are identically and independently distributed.

« Within a pair, parameters p,, o; are the same

o As described in table 10 of [Greenfield and Sargent, 1993] p. 27, parameters of log normal distributions for the
seven unique probabilities P(A;) have been calibrated to be the values in the following Python code:

mul, sigmal = 4.28, 1.1947
mu2, sigma2 = 3.39, 1.1947
mu3, sigma3 = 2.795, 1.1947
mu4, sigmad = 2.717, 1.1947
mub, sigmab5 = 2.717, 1.1947
mub6, sigma6 = 1.444, 1.4632
mu7, sigma7 = -.040, 1.4632

266 Chapter 14. Fault Tree Uncertainties

Intermediate Quantitative Economics with Python

© Note

Because the failure rates are all very small, log normal distributions with the above parameter values actually describe
P(A;) times 107%.

So the probabilities that we’ll put on the z axis of the probability mass function and associated cumulative distribution
function should be multiplied by 10~%°

To extract a table that summarizes computed quantiles, we'll use a helper function

def find_nearest (array, value):
array = np.asarray (array)
idx = (np.abs(array - wvalue)) .argmin ()
return idx

We compute the required thirteen convolutions in the following code.

(Please feel free to try different values of the power parameter p that we use to set the number of points in our grid for
constructing the probability mass functions that discretize the continuous log normal distributions.)

We'll plot a counterpart to the cumulative distribution function (CDF) in figure 5 on page 29 of [Greenfield and Sargent,
1993] and we'll also present a counterpart to their Table 11 on page 28.

p=15
I = 2**p # Truncation value
m = .05 # increment size

pl,pl_norm,x = pdf_seq
p2,p2_norm,x = pdf_seq
p3,p3_norm,x = pdf_seq
p4,p4_norm,x = pdf_seq
p5,p5_norm,x = pdf_seq
p6,p6_norm,x = pdf_seq
p7,p7_norm,x = pdf_seqg(mu7,sigma7,I,m

p8,p8_norm,x = pdf_seqg(mu7,sigma7,I,m

p9,p9_norm,x = pdf_seqg(mu7,sigma7,I,m

p10,p10_norm,x = pdf_seqg(mu7, sigma7,I,m)
pll,pll_norm,x = pdf_seg(mu7,sigma7,I,m)
pl2,pl2_norm,x = pdf_seg(mu7,sigma7,I,m)
pl3,pl3_norm,x = pdf_seqg(mu7,sigma7,I,m)
pl4,pl4_norm,x = pdf_seg(mu7,sigma7,I,m)

mul, sigmal, I, m)
mu2, sigma2, I,m)
mu3, sigma3, I, m)
mu4, sigma4, I, m)
mub5, sigma5, I, m)
mu6, sigma6, I,m)
)
)
)

tic = time.perf_counter ()

cl = fftconvolve (pl_norm,p2_norm)
c2 = fftconvolve(cl,p3_norm)

c3 = fftconvolve (c2,p4_norm)

c4 = fftconvolve (c3,p5_norm)

c5 = fftconvolve (c4,p6_norm)

c6 = fftconvolve (c5,p7_norm)

c7 = fftconvolve (c6,p8_norm)

c8 = fftconvolve(c7,p9_norm)

c9 = fftconvolve (c8,pl0_norm)

cl0 = fftconvolve(c9,pll_norm)

(continues on next page)

14.9. Waste Hoist Failure Rate 267

Intermediate Quantitative Economics with Python

(continued from previous page)
cll = fftconvolve(cl0,pl2_norm)
cl2 = fftconvolve(cll,pl3_norm)
cl3 fftconvolve (cl12,pl4_norm)

toc = time.perf_counter ()

tdiffl3 = toc - tic

print ("time for 13 convolutions = ", tdiffl3)
time for 13 convolutions = 8.35468168999978
dl3 = np.cumsum(cl3)

Nx=int (1400)
plt.figure ()

plt.plot (x[0:int (Nx/m)],d13[0:int (Nx/m)]) # show Yad this —-- I multiplied by m ——_
wstep size
plt.hlines .5, min (Nx, linestyles="'dotted',colors = {'black'})

(0 X)
plt.hlines (0.9,min(x),Nx,linestyles="'dotted',colors = {'black'})
plt.hlines (0.95,min (x),Nx, linestyles="dotted',colors = {'black'})
plt.hlines (0.1, min(x),Nx,linestyles="dotted',colors = {'black'})
plt.hlines (0.05,min (x),Nx, linestyles="dotted',colors = {'black'})
plt.ylim(0, 1)

plt.x1lim (0, Nx)

plt.xlabel ("$x107{-9}$",loc = "right")

plt.show ()

x_1 = x[find_nearest (d13,0.01)]
x_5 x[find_nearest (d13,0.05)]
x_10 = x[find_nearest (d13,0.)]
x_50 = x[find_nearest (d13,0.50)
X_66 = x[find_nearest(dl3,0.665
x_85 = x[find_nearest (d13,0.85)
x_90 = x[find_nearest (d13,0.90)
x_95 = x[find_nearest (d13,0.95)
x_99 = x[find_nearest (d13,0.99)]

x_9978 = x[find_nearest (d13,0.9978)]

1
)]
]
]
]

print (tabulate ([

llgl f"‘Xl‘V'"J,
50! £ X_5 ;"J ,
10%',£f"{x_10}"]1,
50%',f"{x_50}"],

"66.5%", £" {x_66}"],
855", £"{x_85;"],
'90% ,E"{x_90}"],
195%", £" {x_95}"]

14

'99%!', f"{x_99}"],

99. 78°' f"{x_9978}"11,

headers = ['Percentile', 'x * 1e-9']))

[
[
[
[
[
[|l
[
[
[
[

268 Chapter 14. Fault Tree Uncertainties

Intermediate Quantitative Economics with Python

1.0
0.8 7
0.6 7
0.4 1
0.2 7
0.0 T T T T T T
0 200 400 600 800 1000 1200 1400
x1077
Percentile x * le-9
1% 76.15
5% 106.5
10% 128.2
50% 260.55
66.5% 338.55
85% 509.4
90% 608.8
95% 807.6
99% 1470.2
99.78% 2474.85

The above table agrees closely with column 2 of Table 11 on p. 28 of of [Greenfield and Sargent, 1993].

Discrepancies are probably due to slight differences in the number of digits retained in inputting ut;, 0;,¢ = 1, ..., 14 and
in the number of points deployed in the discretizations.

14.9. Waste Hoist Failure Rate 269

Intermediate Quantitative Economics with Python

270 Chapter 14. Fault Tree Uncertainties

CHAPTER
FIFTEEN

INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

O GprU
This lecture was built using a machine with the latest CUDA and CUDANN frameworks installed with access to a
GPU.

To run this lecture on Google Colab, click on the “play” icon top right, select Colab, and set the runtime environment
to include a GPU.

To run this lecture on your own machine, you need to install the software listed following this notice.

In addition to what’s included in base Anaconda, we need to install the following packages

'pip install -U kaleido plotly
!conda install -y -c plotly plotly-orca

kaleido needs chrome to build images
import kaleido
kaleido.get_chrome_sync ()

© Note

If you are running this on Google Colab the above cell will present an error. This is because Google Colab doesn’t
use Anaconda to manage the Python packages. However this lecture will still execute as Google Colab has plotly

installed.

We also need to install JAX to run this lecture

'pip install --upgrade jax

import jax
print (f"JAX backend: jax.devices () [0] .platform}") # to check that gpu is activated.

yvin environment

JAX backend: gpu

W1124 03:47:20.937668 3246 cuda_executor.cc:1802] GPU interconnect information.
~not available: INTERNAL: NVML doesn't support extracting fabric info or NVLink.
~1s not used by the device.

W1l124 03:47:20.941130 3140 cuda_executor.cc:1802] GPU interconnect information.

(continues on next page)

271

https://colab.research.google.com/

Intermediate Quantitative Economics with Python

(continued from previous page)

<snot available: INTERNAL: NVML doesn't support extracting fabric info or NVLink..
~is not used by the device.

15.1 Overview

Substantial parts of machine learning and artificial intelligence are about
« approximating an unknown function with a known function
« estimating the known function from a set of data on the left- and right-hand variables

This lecture describes the structure of a plain vanilla artificial neural network (ANN) of a type that is widely used to
approximate a function f that maps « in a space X into y in a space Y.

To introduce elementary concepts, we study an example in which x and y are scalars.
We'll describe the following concepts that are brick and mortar for neural networks:

e aneuron

e an activation function

« anetwork of neurons

A neural network as a composition of functions

« back-propagation and its relationship to the chain rule of differential calculus

15.2 A Deep (but not Wide) Artificial Neural Network

We describe a “deep” neural network of “width” one.

Deep means that the network composes a large number of functions organized into nodes of a graph.

Width refers to the number of right hand side variables on the right hand side of the function being approximated.
Setting “width” to one means that the network composes just univariate functions.

Let x € R be a scalar and y € R be another scalar.

We assume that y is a nonlinear function of z:

y=f(z)
We want to approximate f(x) with another function that we define recursively.
For a network of depth N > 1, each layer : = 1, ... N consists of
e aninput z;
« an affine function w;x; + bI, where w, is a scalar weight placed on the input x; and b, is a scalar bias
« an activation function h; that takes (w;z; + b;) as an argument and produces an output z,
An example of an activation function h is the sigmoid function

1

e =Ty

272 Chapter 15. Introduction to Artificial Neural Networks

Intermediate Quantitative Economics with Python

Another popular activation function is the rectified linear unit (ReLU) function
h(z) = max(0, z)
Yet another activation function is the identity function
h(z)=z

As activation functions below, we’ll use the sigmoid function for layers 1 to N — 1 and the identity function for layer V.

To approximate a function f(x) we construct f (z) by proceeding as follows.
Let
l; () =w,x +b,.

We construct f by iterating on compositions of functions h; o [;:

f@)~ f(x) =hyolyohy yolyoohyoli(x)
If N > 1, we call the right side a “deep” neural net.
The larger is the integer IV, the “deeper” is the neural net.

Evidently, if we know the parameters {w;,b,;}¥,, then we can compute f(z) for a given & = 7 by iterating on the
recursion

T =h;oli(z;), ,i=1..N (15.1)

starting from z; = Z.

The value of x - ; that emerges from this iterative scheme equals f(7).

15.3 Calibrating Parameters

We now consider a neural network like the one describe above with width 1, depth IV, and activation functions h, for
1 <7 < N that map R into itself.

Let {(w;, bi)}ij\i1 denote a sequence of weights and biases.

As mentioned above, for a given input z;, our approximating function f evaluated at z; equals the “output” xr, ; from
our network that can be computed by iterating on x;,; = h; (w;z; + b;).

For a given prediction §(x) and target y = f(x), consider the loss function
. 1 2
£(9,y) (@) =5 G —y)" (2).

T . N .
This criterion is a function of the parameters {(w;,b;)},_, and the point x.

We're interested in solving the following problem:

min [£ (oi10) (0)dto)
{(w; 7bi>}i:1

where () is some measure of points z € R over which we want a good approximation f(z) to f(z).

15.3. Calibrating Parameters 273

Intermediate Quantitative Economics with Python

Stack weights and biases into a vector of parameters p:

WN

Loy

Applying a “poor man’s version” of a stochastic gradient descent algorithm for finding a zero of a function leads to the
following update rule for parameters:

ds dry,,
o TN+
dx N+1 dpy,

DPi+1 = Pr — (15.2)

dL
dr g

where = —(zy,1 —y) and @ > 0 is a step size.
(See this and this to gather insights about how stochastic gradient descent relates to Newton’s method.)
To implement one step of this parameter update rule, we want the vector of derivatives dwT]fk“.

In the neural network literature, this step is accomplished by what is known as back propagation.

15.4 Back Propagation and the Chain Rule

Thanks to properties of
« the chain and product rules for differentiation from differential calculus, and
« lower triangular matrices
back propagation can actually be accomplished in one step by
« inverting a lower triangular matrix, and
 matrix multiplication

(This idea is from the last 7 minutes of this great youtube video by MIT’s Alan Edelman)

https://youtu.be/rZS2LGiurKY

Here goes.

Define the derivative of h(z) with respect to z evaluated at z = z; as d;:

d
5i - %h<z)|z:zi

or
0; =h' (wx; +b;).
Repeated application of the chain rule and product rule to our recursion (15.1) allows us to obtain:

dw; g = 6; (dw;z; + w;dz; +b;)

274 Chapter 15. Introduction to Artificial Neural Networks

https://en.wikipedia.org/wiki/Gradient_descent#Description
https://en.wikipedia.org/wiki/Newton's_method
https://youtu.be/rZS2LGiurKY

Intermediate Quantitative Economics with Python

After imposing dx, = 0, we get the following system of equations:

dw,
dz, dpw; 6; O 0 0 db, u? 8 8 8 dz,
: — . : 2 .
: 0 0 - 0 0 : + 0 0 0
dzn iy 0 0 0 dywy Oy dw 0 0 wy 0 Az Ny,
b dby -
or
dx = Ddp + Ldx
which implies that
dr = (I — L)' Ddp
which in turn implies
dx ., /dw,
dx ., /dby i
: =ey(I—L) D.
dry . /dwy
dry iy /dby

We can then solve the above problem by applying our update for p multiple times for a collection of input-output pairs

{(=%, yz)}j\i | that we'll call our “training set”.

15.5 Training Set

Choosing a training set amounts to a choice of measure 1 in the above formulation of our function approximation problem
as a minimization problem.

In this spirit, we shall use a uniform grid of, say, 50 or 200 points.

There are many possible approaches to the minimization problem posed above:
« batch gradient descent in which you use an average gradient over the training set
« stochastic gradient descent in which you sample points randomly and use individual gradients
» something in-between (so-called “mini-batch gradient descent”)

The update rule (15.2) described above amounts to a stochastic gradient descent algorithm.

from IPython.display import Image
import jax.numpy as jnp

from jax import grad, jit, jacfwd, vmap
from jax import random

import jax

import plotly.graph_objects as go

A helper function to randomly initialize weights and biases
for a dense neural network layer
def random_layer_params(m, n, key, scale=1.):
w_key, b_key = random.split (key)
return scale * random.normal (w_key, (n, m)), scale * random.normal (b_key, (n,))
(continues on next page)

15.5. Training Set 275

Intermediate Quantitative Economics with Python

(continued from previous page)

Initialize all layers for a fully-connected neural network with sizes "sizes"
def init_network_params (sizes, key):

keys = random.split (key, len(sizes))
return [random_layer_params(m, n, k) for m, n, k in zip(sizes[:-1], sizes[l:],_
~keys)]

def compute_x8w_seqg(params, X):
Initialize arrays

8 = jnp.zeros (len(params))

xs = jnp.zeros (len(params) + 1)
ws = jnp.zeros (len (params))

bs = jnp.zeros(len(params))

h = jax.nn.sigmoid

xs = Xs.at[0].set (xX)

for i, (w, b) in enumerate (params[:-1]):
output = w * xs[i] + b
activation = h(output[0, 0])

Store elements

8 = 8.at[i].set (grad(h) (output [0, 0]))
ws = ws.at[i1].set(w[0, 01])

bs = bs.at[i].set (b[0])

xs = xs.at[1+1].set (activation)

final w, final b = params[-1]
preds = final w * xs[-2] + final_b

Store elements

85 = 8.at[-1].set (1.)

ws = ws.at[-1].set (final_w([0, O0])
bs bs.at[-1].set (final_b[0])

xs = xs.at[-1].set(preds[0, 0])

return xs, 8, ws, bs

def loss (params, x, Vy):
xs, 8, ws, bs = compute_x8w_seq(params, x)
preds = xs[-1]

return 1 / 2 * (y — preds) ** 2

Parameters
N = 3 # Number of layers

layer_sizes = [1,] * (N + 1)

param_scale = 0.1

step_size = 0.01

params = init_network_params (layer_sizes, random.PRNGKey (1))
x = 5

y = 3

xs, 8, ws, bs = compute_x8w_seq(params, x)

276 Chapter 15. Introduction to Artificial Neural Networks

Intermediate Quantitative Economics with Python

dxs_ad = jacfwd(lambda params, x: compute_x8w_seq(params, x)[0], argnums=0) (params, x)
dxs_ad_mat = jnp.block([dx.reshape((-1, 1)) for dx_tuple in dxs_ad for dx in dx_tuple..
>1)[1:]

jnp.block ([[6 * xs[:-111, [811])

Array ([[1.0165801 , 0.06087969, 0.09382247],
[0.20331602, 0.08501981, 1. 11, dtype=float32)

L = jnp.diag(d * ws, k=-1)
L = L[1:, 1:]

D = jax.scipy.linalg.block_diag(* [row.reshape((1, 2)) for row in jnp.block([[8 * xs[:—
111, [811).T1)

dxs_la = jax.scipy.linalg.solve_triangular (jnp.eye(N) - L, D, lower=True)

Check that the ‘dx' generated by the linear algebra method
are the same as the ones generated using automatic differentiation
jnp.max (jnp.abs (dxs_ad_mat - dxs_la))

Array (0., dtype=float32)

grad_loss_ad = jnp.block([dx.reshape((-1, 1)) for dx_tuple in grad(loss) (params, X,.
y) for dx in dx_tuple 1)

Check that the gradient of the loss is the same for both approaches
Jjnp.max (jnp.abs (- (y — xs[-1]) * dxs_la[-1] - grad_loss_ad))

Array (5.9604645e-08, dtype=float32)

@jit
def update_ad(params, x, Vy):
grads = grad(loss) (params, X, V)
return [(w - step_size * dw, b - step_size * db)

for (w, b), (dw, db) in zip(params, grads)]

@jit

def update_la(params, x, Vy):
xs, 8, ws, bs = compute_x8w_seq(params, Xx)
N = len (params)

L = jnp.diag(d * ws, k=-1)
L = L[1:, 1:]

D = jax.scipy.linalg.block_diag(*[row.reshape((1l, 2)) for row in jnp.block([[8 *_
sxs[:-1]1]1, [8]1]1).T])

dxs_la = jax.scipy.linalg.solve_triangular (jnp.eye (N) L, D, lower=True)
grads = —(y — xs[-1]) * dxs_la[-1]
return [(w - step_size * dw, b - step_size * db)

for (w, b), (dw, db) in zip(params, grads.reshape((-1, 2)))]

15.5. Training Set 277

Intermediate Quantitative Economics with Python

Check that both updates are the same
update_la (params, x, V)

[(Array ([[-0.00826643]], dtype=float32), Array([0.94700736], dtype=float32)),
(Array ([[-2.0638916]], dtype=float32), Array([-0.7872697], dtype=float32)),
(Array ([[1.6248171]1], dtype=float32), Array([1.5765371], dtype=float32))]

update_ad(params, x, V)

[(Array ([[-0.00826644]], dtype=float32), Array([0.94700736], dtype=float32)),
(Array ([[-2.0638916]], dtype=float32), Array([-0.7872697], dtype=float32)),
(Array ([[1.6248171]], dtype=float32), Array([1.5765371], dtype=float32))]

15.6 Example 1

Consider the function
f(x)=-3z+2

on [0.5,3].
We use a uniform grid of 200 points and update the parameters for each point on the grid 300 times.
h; is the sigmoid activation function for all layers except the final one for which we use the identity function and N = 3.

Weights are initialized randomly.

def f(x):
return -3 * x + 2

M = 200
grid = Jjnp.linspace (0.5, 3, num=M)
f_val = f(grid)

indices = jnp.arange (M)
key = random.PRNGKey (0)

def train(params, grid, f_val, key, num_epochs=300) :
for epoch in range (num_epochs) :

key, _ = random.split (key)

random_permutation = random.permutation (random.PRNGKey (1), indices)

for x, y in zip(grid[random_permutation], f_val[random_permutation]) :
params = update_la (params, x, V)

return params

Parameters
N = 3 # Number of layers

layer_sizes = [1,] * (N + 1)

params_ex1l = init_network_params (layer_sizes, key)

$%time

params_ex1l = train(params_exl, grid, f_val, key, num_epochs=500)

278 Chapter 15. Introduction to Artificial Neural Networks

Intermediate Quantitative Economics with Python

CPU times: user 17.6 s, sys: 4.47 s, total: 22.1 s
Wall time: 14.9 s

predictions = vmap (compute_x8w_seq, in_axes=(None, 0)) (params_exl, grid) [0][:, -1]

fig = go.Figure()
fig.add_trace (go.Scatter (x=grid, y=f_val, name=r'S$-3x+25"))
fig.add_trace(go.Scatter (x=grid, y=predictions, name='Approximation'))

Export to PNG file

Image (fig.to_image (format="png"))

fig.show() will provide interactive plot when running
notebook locally

—_— 342

Approximation

15.7 How Deep?

It is fun to think about how deepening the neural net for the above example affects the quality of approximation
« If the network is too deep, you'll run into the vanishing gradient problem

o Other parameters such as the step size and the number of epochs can be as important or more important than the
number of layers in the situation considered in this lecture.

« Indeed, since f is a linear function of x, a one-layer network with the identity map as an activation would probably
work best.

15.7. How Deep? 279

https://en.wikipedia.org/wiki/Vanishing_gradient_problem

Intermediate Quantitative Economics with Python

15.8 Example 2

We use the same setup as for the previous example with
f(x) =log(x)

def f(x):
return jnp.log(x)

grid = jnp.linspace (0.5, 3, num=M)
f_val = f(grid)

Parameters

N = 1 # Number of layers

layer_sizes = [1,] * (N + 1)

params_ex2_1 = init_network_params (layer_sizes, key)

Parameters

N = 2 # Number of layers

layer_sizes = [1, 1 * (N + 1)

params_ex2_2 = init_network_params (layer_sizes, key)

Parameters
N = 3 # Number of layers

layer_sizes = [1,] * (N + 1)

params_ex2_3 = init_network_params (layer_sizes, key)

params_ex2_1 = train(params_ex2_1, grid, f_val, key, num_epochs=300)

params_ex2_2 = train(params_ex2_2, grid, f_val, key, num_epochs=300)

params_ex2_3 = train(params_ex2_3, grid, f_val, key, num_epochs=300)

predictions_1 = vmap (compute_x8w_seq, in_axes=(None, 0)) (params_ex2_1, grid) [0][:, -1]
predictions_2 = vmap (compute_x8w_seq, in_axes=(None, 0)) (params_ex2_2, grid) [0][:, -1]
predictions_3 = vmap (compute_x8w_seq, in_axes=(None, 0)) (params_ex2_3, grid) [0][:, -1]

fig = go.Figure()

fig.add_trace(go.Scatter (x=grid, y=f_val, name=r'S$\log SEN)
fig.add_trace(go.Scatter (x=grid, y=predictions_1, name='One-layer neural network'))
fig.add_trace(go.Scatter (x=grid, y=predictions_2, name='Two-layer neural network'))
fig.add_trace(go.Scatter (x=grid, y=predictions_3, name='Three-layer neural network'))

Export to PNG file

Image (fig.to_image (format="png"))

fig.show() will provide interactive plot when running
notebook locally

280 Chapter 15. Introduction to Artificial Neural Networks

Intermediate Quantitative Economics with Python

logx
——— One-layer neural netwaork

1 —— Two-layer neural network
== Three-layer neural network

0.5

-0.5

0.5 1 1.5 2 2.5 3

15.8. Example 2 281

Intermediate Quantitative Economics with Python

282 Chapter 15. Introduction to Artificial Neural Networks

CHAPTER
SIXTEEN

RANDOMIZED RESPONSE SURVEYS

16.1 Overview

Social stigmas can inhibit people from confessing potentially embarrassing activities or opinions.

When people are reluctant to participate a sample survey about personally sensitive issues, they might decline to partici-
pate, and even if they do participate, they might choose to provide incorrect answers to sensitive questions.

These problems induce selection biases that present challenges to interpreting and designing surveys.

To illustrate how social scientists have thought about estimating the prevalence of such embarrassing activities and opin-
ions, this lecture describes a classic approach of S. L. Warner [Warner, 1965].

Warner used elementary probability to construct a way to protect the privacy of individual respondents to surveys while
still estimating the fraction of a collection of individuals who have a socially stigmatized characteristic or who engage in
a socially stigmatized activity.

Warner’s idea was to add noise between the respondent’s answer and the signal about that answer that the survey maker
ultimately receives.

Knowing about the structure of the noise assures the respondent that the survey maker does not observe his answer.
Statistical properties of the noise injection procedure provide the respondent plausible deniability.
Related ideas underlie modern differential privacy systems.

(See https://en.wikipedia.org/wiki/Differential_privacy)

16.2 Warner’s Strategy

As usual, let’s bring in the Python modules we'll be using.

import numpy as np
import pandas as pd
Suppose that every person in population either belongs to Group A or Group B.
We want to estimate the proportion = who belong to Group A while protecting individual respondents’ privacy.
Warner [Warner, 1965] proposed and analyzed the following procedure.
« A random sample of n people is drawn with replacement from the population and each person is interviewed.
o Draw n random samples from the population with replacement and interview each person.

« Prepare a random spinner that with p probability points to the Letter A and with (1 — p) probability points to the
Letter B.

283

https://en.wikipedia.org/wiki/Differential_privacy

Intermediate Quantitative Economics with Python

« Each subject spins a random spinner and sees an outcome (A or B) that the interviewer does not observe.

« The subject states whether he belongs to the group to which the spinner points.

« If the spinner points to the group that the spinner belongs, the subject reports “yes”; otherwise he reports “no”.

o The subject answers the question truthfully.
Warner constructed a maximum likelihood estimators of the proportion of the population in set A.
Let

« 7 : True probability of A in the population

« p : Probability that the spinner points to A

. X {1, if the ith subject says yes

! 0, if the ith subject says no

Index the sample set so that the first n; report “yes”, while the second n — n; report “no”.

The likelihood function of a sample set is
L=[mp+(1-m)1—p)]" [1-mp+r1—p)]" ™
The log of the likelihood function is:
log(L) = nylog[mp + (1 = m)(1 —p)] + (n —ny)log[(1 —m)p + 7(1 —p)]
The first-order necessary condition for maximizing the log likelihood function with respect to m is:

(n—ny)(2p—1) _ ny(2p —1)

(1-—mp+n(l—p) 7wp+(1—m)(1-p)

or
n
4+ (1—m)(1—p) = ;1

If p + %, then the maximum likelihood estimator (MLE) of 7 is:

p—1 n

[

We compute the mean and variance of the MLE estimator 7 to be:

~ 1 1 &
E(7) = o1 [p—ljun;[)(i]
- 2p1_1 p—1+7mp+ (1 —m(1—p)]
and
. nVar(X;)
Var(w) = o 1n?
= [rp+ (A —m)(A —p)][1—m)p+7(1—p)]
(2p —1)2n?
= i+<2p2—2p+%)(_27r2+2ﬂ._%)
(2p —1)2n?
1 1 1
= tep-tp ")’

(16.1)

(16.2)

(16.3)

(16.4)

(16.5)

(16.6)

284 Chapter 16. Randomized Response Surveys

Intermediate Quantitative Economics with Python

Equation (16.5) indicates that 7 is an unbiased estimator of 7 while equation (16.6) tell us the variance of the estimator.
To compute a confidence interval, first rewrite (16.6) as:
1 1

1 _ (- _ 1)2 —T5 —
Var(z) = 4 (m—3)° Tew-pE A (16.7)
n n

This equation indicates that the variance of 7 can be represented as a sum of the variance due to sampling plus the
variance due to the random device.

From the expressions above we can find that:
e When p is % expression (16.1) degenerates to a constant.
e When pis 1 or 0, the randomized estimate degenerates to an estimator without randomized sampling.
We shall only discuss situations in which p € (%, 1)
(a situation in which p € (0, %) is symmetric).
From expressions (16.5) and (16.7) we can deduce that:

o The MSE of 7 decreases as p increases.

16.3 Comparing Two Survey Designs

Let’s compare the preceding randomized-response method with a stylized non-randomized response method.
In our non-randomized response method, we suppose that:

o Members of Group A tells the truth with probability 7, while the members of Group B tells the truth with proba-
bility 7},

« Y, is 1 or 0 according to whether the sample’s ith member’s report is in Group A or not.
Then we can estimate 7 as:

i Y (16.8)
n

7"(\':

We calculate the expectation, bias, and variance of the estimator to be:

E(7) = 7T, + [(1—7)(1 —T})] (16.9)
Bias(7) = E(7 —)

—A[T, + T, 2]+ [1 - T} oo

Var(fr) — [ﬂ-Ta + (1 — 7‘-)(1 — Tb)] [1 — 7TTa — (1 — 71—)(1 _ Tb)] (16.11)

n
It is useful to define a

MSE Rafio — Mean Square Error Randomized

Mean Square Error Regular

We can compute MSE Ratios for different survey designs associated with different parameter values.

The following Python code computes objects we want to stare at in order to make comparisons under different values of
74 and n:

16.3. Comparing Two Survey Designs 285

Intermediate Quantitative Economics with Python

class Comparison:
def _ init_ (self, A, n):
self.A = A

self.n = n

TaTb = np.array([[0.95, 1], [0.9, 11, [0.7, 11,
[0.5, 11, [1, 0.95], I[1, 0.9],
[1, 0.71, [1, 0.5], [0.95, 0.95],
(6.9, 0.91, (0.7, 0.71, [0.5, 0.511)

self.p_arr = np.array([0.6, 0.7, 0.8, 0.91])

self.p_map = dict(zip(self.p_arr, [f"MSE Ratio: p = {x}" for x in self.p_

—arr]))

self.template = pd.DataFrame (columns=self.p_arr)

self.template[['T_a','T_Db']] = TaTb

self.template['Bias'] = None

def theoretical (self):
A = self.A

n = self.n
df = self.template.copy ()
df['Bias'] = A * (df['T_a'] + df['T_b'] - 2) + (1 - df['T_Db'])
for p in self.p_arr:

df[p] = (1 / (16 * (p — 1/2)**2) - (A - 1/2)**2) / n / \

(df['Bias']**2 + ((A * df['T_a'] + (1 — A) * (1 — df['T_Db'])) *_
(1 - A * df['T_a']l] - (L —A) * (1 - df['T_b'])) / n))

df [p] = df[p].round(2)

df = df.set_index (["T_a", "T_b", "Bias"]).rename (columns=self.p_map)

return df

def MCsimulation(self, size=1000, seed=123456):
A = self.A
n = self.n
df = self.template.copy ()
np.random. seed (seed)
sample = np.random.rand(size, self.n) <= A

random_device = np.random.rand(size, n)

mse_rd = {}

for p in self.p_arr:
spinner = random_device <= p
rd_answer = sample * spinner + (1 - sample) * (1 - spinner)
nl = rd_answer.sum(axis=1)
pi_hat = (p - 1) / (2 *p - 1) +nl / n/ (2 *p - 1)
mse_rd[p] = np.sum((pi_hat — A)**2)

for inum, irow in df.iterrows():
truth_a = np.random.rand(size, self.n) <= irow.T_a
truth_b = np.random.rand(size, self.n) <= irow.T_b
trad_answer = sample * truth_a + (1 - sample) * (1 - truth_b)
pi_trad = trad_answer.sum(axis=1) / n
df.loc[inum, 'Bias'] = pi_trad.mean() - A

mse_trad = np.sum((pi_trad - A)**2)
for p in self.p_arr:
df.loc[inum, p] = (mse_rd[p] / mse_trad).round(2)
df = df.set_index (["T_a", "T_b", "Bias"]).rename (columns=self.p_map)
return df

Let’s put the code to work for parameter values
e Ty = 0.6

» n = 1000

286 Chapter 16. Randomized Response Surveys

Intermediate Quantitative Economics with Python

We can generate MSE Ratios theoretically using the above formulas.

We can also perform Monte Carlo simulations of a MSE Ratio.

cpl = Comparison (0.6, 1000)
dfl_theoretical = cpl.theoretical ()
dfl_theoretical

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T_a T_b Bias

0.95 1.00 -0.03 5.45 1.36 0.60
0.90 1.00 -0.06 1.62 0.40 0.18
0.70 1.00 -0.18 0.19 0.05 0.02
0.50 1.00 -0.30 0.07 0.02 0.01
1.00 0.95 0.02 9.82 2.44 1.08

0.90 0.04 3.41 0.85 0.37

0.70 0.12 0.43 0.11 0.05

0.50 0.20 0.16 0.04 0.02
0.95 0.95 -0.01 18.25 4.54 2.00
0.90 0.90 -0.02 9.70 2.41 1.06
0.70 0.70 -0.06 1.62 0.40 0.18
0.50 0.50 -0.10 0.61 0.15 0.07

MSE Ratio: p = 0.9
T a T b Bias

0.95 1.00 -0.03 0.33
0.90 1.00 -0.06 0.10
0.70 1.00 -0.18 0.01
0.50 1.00 -0.30 0.00
1.00 0.95 0.02 0.60

0.90 0.04 0.21

0.70 0.12 0.03

0.50 0.20 0.01
0.95 0.95 -0.01 1.11
0.90 0.90 -0.02 0.59
0.70 0.70 -0.06 0.10
0.50 0.50 -0.10 0.04

dfl_mc = cpl.MCsimulation ()

dfl_mc
MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T a T_b Bias
0.95 1.00 -0.030060 5.76 1.36 0.63
0.90 1.00 -0.060045 1.73 0.41 0.19
0.70 1.00 -0.179530 0.21 0.05 0.02
0.50 1.00 -0.300077 0.07 0.02 0.01
1.00 0.95 0.019770 10.59 2.5 1.15
0.90 0.040050 3.63 0.86 0.39
0.70 0.120052 0.46 0.11 0.05
0.50 0.199746 0.17 0.04 0.02
0.95 0.95 -0.010137 18.65 4.41 2.02
0.90 0.90 -0.020103 10.48 2.48 1.14
0.70 0.70 -0.060488 1.71 0.4 0.19
0.50 0.50 -0.099341 0.66 0.16 0.07

MSE Ratio: p = 0.9
(continues on next page)

16.3. Comparing Two Survey Designs 287

Intermediate Quantitative Economics with Python

T _a T_b Bias
0.95 1.00 -0.030060 0.35
0.90 1.00 -0.060045 0.1
0.70 1.00 -0.179530 0.01
0.50 1.00 -0.300077 0.0
1.00 0.95 0.019770 0.64
0.90 0.040050 0.22
0.70 0.120052 0.03
0.50 0.199746 0.01
0.95 0.95 -0.010137 1.12
0.90 0.90 -0.020103 0.63
0.70 0.70 -0.060488 0.1
0.50 0.50 -0.099341 0.04

The theoretical calculations do a good job of predicting Monte Carlo results.

(continued from previous page)

We see that in many situations, especially when the bias is not small, the MSE of the randomized-sampling methods is

smaller than that of the non-randomized sampling method.

These differences become larger as p increases.

By adjusting parameters 7 4 and n, we can study outcomes in different situations.

For example, for another situation described in Warner [Warner, 1965]:

. 7TA = 0.5
« n = 1000
we can use the code

cp2 = Comparison (0.5, 1000)
df2_theoretical = cp2.theoretical ()
df2_theoretical

MSE Ratio: p = 0.6 MSE Ratio:
T a T_b Bias

0.95 1.00 -0.025 7 0dl8
0.90 1.00 -0.050 2.27
0.70 1.00 -0.150 0.27
0.50 1.00 -0.250 0.10
1.00 0.95 0.025 7.15

0.90 0.050 BolT

0.70 0.150 0.27

0.50 0.250 0.10
0.95 0.95 0.000 25.00
0.90 0.90 0.000 25.00
0.70 0.70 0.000 25.00
0.50 0.50 0.000 25.00

MSE Ratio: p = 0.9
T_a T_b Bias

0.95 1.00 -0.025 0.45
0.90 1.00 -0.050 0.14
0.70 1.00 -0.150 0.02
0.50 1.00 -0.250 0.01
1.00 0.95 0.025 0.45

0.90 0.050 0.14

0.70 0.150 0.02

p

o Oy O O O O O O O O

0.

7

.79
.57
o 07
.02
.79
oSV
.07
.02
0 B8
> A
.25
0 B8

MSE Ratio:

p=20.8 \

.79
.25
.03
.01
.79
.25
.03
.01
.78
.78
.78
.78

NDNDNDNDDNDNDNDNOOOO OO o O

(continues on next page)

288 Chapter 16. Randomized Response Surveys

Intermediate Quantitative Economics with Python

(continued from previous page)

0.50 0.250 0.01
0.95 0.95 0.000 1.56
0.90 0.90 0.000 1.56
0.70 0.70 0.000 1.56
0.50 0.50 0.000 1.56

df2_mc = cp2.MCsimulation ()
df2_mc

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T_a T_b Bias

0.95 1.00 -0.025230 7.0 1.69 0.75
0.90 1.00 -0.050279 2028 0.54 0.24
0.70 1.00 -0.1498¢66 0.27 0.07 0.03
0.50 1.00 -0.250211 0.1 0.02 0.01
1.00 0.95 0.024410 7.38 1.78 0.79

0.90 0.049839 2.26 0.54 0.24

0.70 0.149769 0.27 0.07 0.03

0.50 0.249851 0.1 0.02 0.01
0.95 0.95 -0.000260 24.29 5.86 2P0l
0.90 0.90 -0.000109 25.73 Bol 2.74
0.70 0.70 -0.000439 25.75 6.21 2.74
0.50 0.50 0.000768 24.91 6.01 2.65

MSE Ratio: p = 0.9
T a T_b Bias

0.95 1.00 -0.025230 0.44
0.90 1.00 -0.050279 0.14
0.70 1.00 -0.1498¢66 0.02
0.50 1.00 -0.250211 0.01
1.00 0.95 0.024410 0.46

0.90 0.049839 0.14

0.70 0.149769 0.02

0.50 0.249851 0.01
0.95 0.95 -0.000260 1.52
0.90 0.90 -0.000109 1.61
0.70 0.70 -0.000439 1.61
0.50 0.50 0.000768 1.56

We can also revisit a calculation in the concluding section of Warner [Warner, 1965] in which
e Ty =0.6
« n = 2000

We use the code

cp3 = Comparison (0.6, 2000)
df3_theoretical = cp3.theoretical ()
df3_theoretical

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \

T a T_b Bias

0.95 1.00 -0.03 3.05 0.76 0.33
0.90 1.00 -0.06 0.84 0.21 0.09
0.70 1.00 -0.18 0.10 0.02 0.01
0.50 1.00 -0.30 0.03 0.01 0.00

(continues on next page)

16.3. Comparing Two Survey Designs 289

Intermediate Quantitative Economics with Python

(continued from previous page)

1.00 0.95 0.02 6.03 1.50 0.66
0.90 0.04 1.82 0.45 0.20
0.70 0.12 0.22 0.05 0.02
0.50 0.20 0.08 0.02 0.01
0.95 0.95 -0.01 14.12 3.51 1.55
0.90 0.90 -0.02 5.98 1.49 0.66
0.70 0.70 -0.06 0.84 0.21 0.09
0.50 0.50 -0.10 0.31 0.08 0.03

MSE Ratio: p = 0.9
T a T_b Bias

0.95 1.00 -0.03 0.19
0.90 1.00 -0.06 0.05
0.70 1.00 -0.18 0.01
0.50 1.00 -0.30 0.00
1.00 0.95 0.02 0.37

0.90 0.04 0.11

0.70 0.12 0.01

0.50 0.20 0.00
0.95 0.95 -0.01 0.86
0.90 0.90 -0.02 0.36
0.70 0.70 -0.06 0.05
0.50 0.50 -0.10 0.02

df3_mc = cp3.MCsimulation ()
df3_mc

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T a T_b Bias

0.95 1.00 -0.030316 3.27 0.8 0.34
0.90 1.00 -0.060352 0.91 0.22 0.09
0.70 1.00 -0.180087 0.11 0.03 0.01
0.50 1.00 -0.299849 0.04 0.01 0.0
1.00 0.95 0.019734 6.7 1.64 0.69

0.90 0.039766 2.01 0.49 0.21

0.70 0.119789 0.24 0.06 0.02

0.50 0.200138 0.09 0.02 0.01
0.95 0.95 -0.010475 14.78 3.61 1.53
0.90 0.90 -0.020373 6.32 1.54 0.65
0.70 0.70 -0.059945 0.92 0.23 0.1
0.50 0.50 -0.100103 0.34 0.08 0.03

MSE Ratio: p = 0.9
T_a T_b Bias

0.95 1.00 -0.030316 0.19
0.90 1.00 -0.060352 0.05
0.70 1.00 -0.180087 0.01
0.50 1.00 -0.299849 0.0
1.00 0.95 0.019734 0.39

0.90 0.039766 0.12

0.70 0.119789 0.01

0.50 0.200138 0.0
0.95 0.95 -0.010475 0.85
0.90 0.90 -0.020373 0.36
0.70 0.70 -0.059945 0.05
0.50 0.50 -0.100103 0.02

290 Chapter 16. Randomized Response Surveys

Intermediate Quantitative Economics with Python

Evidently, as n increases, the randomized response method does better performance in more situations.

16.4 Concluding Remarks

This QuantEcon lecture describes some alternative randomized response surveys.
That lecture presents a utilitarian analysis of those alternatives conducted by Lars Ljungqvist [Ljungqvist, 1993].

import matplotlib.pyplot as plt
import numpy as np

16.4. Concluding Remarks 291

Intermediate Quantitative Economics with Python

292 Chapter 16. Randomized Response Surveys

CHAPTER
SEVENTEEN

EXPECTED UTILITIES OF RANDOM RESPONSES

17.1 Overview

This QuantEcon lecture describes randomized response surveys in the tradition of Warner [Warner, 1965] that are designed
to protect respondents’ privacy.

Lars Ljungqvist [Ljungqvist, 1993] analyzed how a respondent’s decision about whether to answer truthfully depends on
expected utility.

The lecture tells how Ljungqvist used his framework to shed light on alternative randomized response survey techniques
proposed, for example, by [Lanke, 1975], [Lanke, 1976], [Leysieffer and Warner, 1976], [Anderson, 1976], [Fligner et
al., 1977], [Greenberg et al., 1977], [Greenberg et al., 1969].

17.2 Privacy Measures

We consider randomized response models with only two possible answers, “yes” and “no.”
The design determines probabilities

Pr(yes|A) = 1 — Pr(no|A)

Pr(yes|A') = 1 — Pr(no|A")

These design probabilities in turn can be used to compute the conditional probability of belonging to the sensitive group
A for a given response, say 7:

74 Pr(r|A)
7 APr(r|A) + (1 — 74)Pr(r|A")

Pr(Alr) = (17.1)

17.3 Zoo of Concepts

At this point we describe some concepts proposed by various researchers

293

Intermediate Quantitative Economics with Python

17.3.1 Leysieffer and Warner(1976)

The response 7 is regarded as jeopardizing with respect to A or A if
Pr(Alr) > my
or (17.2)
Pr(A'|r) >1 -1,
From Bayes’s rule:

Pr(A|r) " (1—my) _ Pr(r|A)
Pr(A’|r) T Pr(r|A")

(17.3)

If this expression is greater (less) than unity, it follows that r is jeopardizing with respect to A(A”). Then, the natural
measure of jeopardy will be:

 Pr(r]4)
g(r|A) = W

and (17.4)
glrla’) = 12

Suppose, without loss of generality, that Pr(yes|A) > Pr(yes|A’), then a yes (no) answer is jeopardizing with respect
A(A)), that is,

g(yes|A) > 1
and

g(no|A") > 1

Leysieffer and Warner proved that the variance of the estimate can only be decreased through an increase in one or both
of these two measures of jeopardy.

An efficient randomized response model is, therefore, any model that attains the maximum acceptable levels of jeopardy
that are consistent with cooperation of the respondents.

As a special example, Leysieffer and Warner considered “a problem in which there is no jeopardy in a no answer”; that
is, g(no|A") can be of unlimited magnitude.

Evidently, an optimal design must have
Pr(yes|A) =1
which implies that

Pr(Afno) =0

17.3.2 Lanke(1976)

Lanke (1975) [Lanke, 1975] argued that “it is membership in Group A that people may want to hide, not membership in
the complementary Group A’.”

For that reason, Lanke (1976) [Lanke, 1976] argued that an appropriate measure of protection is to minimize
max {Pr(A|yes), Pr(Ano)} (17.5)

Holding this measure constant, he explained under what conditions the smallest variance of the estimate was achieved
with the unrelated question model or Warner’s (1965) original model.

294 Chapter 17. Expected Utilities of Random Responses

Intermediate Quantitative Economics with Python

17.3.3 2.3 Fligner, Policello, and Singh

Fligner, Policello, and Singh reached similar conclusion as Lanke (1976). [Fligner et al., 1977]
They measured “private protection” as

1 — max {Pr(Alyes), Pr(A|no)}

17.6
— (17.6)

17.3.4 2.4 Greenberg, Kuebler, Abernathy, and Horvitz (1977)

[Greenberg et al., 1977]

Greenberg, Kuebler, Abernathy, and Horvitz (1977) stressed the importance of examining the risk to respondents who
do not belong to A as well as the risk to those who do belong to the sensitive group.

They defined the hazard for an individual in A as the probability that he or she is perceived as belonging to A:
Pr(yes|A) x Pr(A|yes) + Pr(no|A) x Pr(A|no) (17.7)
Similarly, the hazard for an individual who does not belong to A would be
Pr(yes|A") x Pr(Alyes) + Pr(no|A") x Pr(A|no) (17.8)

Greenberg et al. (1977) also considered an alternative related measure of hazard that “is likely to be closer to the actual
concern felt by a respondent.”

The “limited hazard” for an individual in A and A is

Pr(yes|A) x Pr(Alyes) (17.9)
and

Pr(yes|A") x Pr(Alyes) (17.10)

This measure is just the first term in (17.7), i.e., the probability that an individual answers “yes” and is perceived to belong
to A.

17.4 Respondent’s Expected Utility

17.4.1 Truth Border

Key assumptions that underlie a randomized response technique for estimating the fraction of a population that belongs
to A are:

« Assumption 1: Respondents feel discomfort from being thought of as belonging to A.

« Assumption 2: Respondents prefer to answer questions truthfully than to lie, so long as the cost of doing so is not
too high. The cost is taken to be the discomfort in 1.

Let r; denote individual ¢’s response to the randomized question.
,; can only take values “yes” or “no”.

For a given design of a randomized response interview and a given belief about the fraction of the population that belongs
to A, the respondent’s answer is associated with a conditional probability Pr(A|r;) that the individual belongs to A.

Given r; and complete privacy, the individual’s utility is higher if 7, represents a truthful answer rather than a lie.

In terms of a respondent’s expected utility as a function of Pr(A|r;) and r;

17.4. Respondent’s Expected Utility 295

Intermediate Quantitative Economics with Python

o The higher is Pr(A|r;), the lower isindividual 7’s expected utility.
« expected utility is higher if r; represents a truthful answer rather than a lie
Define:
o ¢, € {truth, lie}, a dichotomous variable that indicates whether or not r; is a truthful statement.

o U, (Pr(A|r;), ¢;), a utility function that is differentiable in its first argument, summarizes individual ¢’s expected
utility.

Then there is an r; such that

oU; (Pr(Alr,), ¢;)

Pr(Alr,) < 0, for ¢, € {truth, lie} (17.11)
and
U, (Pr(Alr;), truth) > U, (Pr(Alr;), lie) , for Pr(A|r;) € [0,1] (17.12)
Suppose now that correct answer for individual ¢ is “yes”.
Individual < would choose to answer truthfully if
U, (Pr(Alyes), truth) > U; (Pr(A|no), lie) (17.13)

If the correct answer is “no”, individual ¢ would volunteer the correct answer only if
U, (Pr(A|no), truth) > U, (Pr(Alyes), lie) (17.14)
Assume that
Pr(Alyes) > w4 > Pr(A|no)

so that a “yes” answer increases the odds that an individual belongs to A.
Constraint (17.14) holds for sure.
Consequently, constraint (17.13) becomes the single necessary condition for individual 7 always to answer truthfully.

At equality, constraint (10.a) determines conditional probabilities that make the individual indifferent between telling the
truth and lying when the correct answer is “yes”:

U, (Pr(Alyes), truth) = U, (Pr(A|no), lie) (17.15)

Equation (17.15) defines a “truth border”.

Differentiating (17.15) with respect to the conditional probabilities shows that the truth border has a positive slope in the
space of conditional probabilities:

AU, (Pr(Alyes),truth)

OPr(A|no) DPr(Alyes)
= —— >0 (17.16)
oU,; (Pr(Alno),li
OPr(Alyes) W

The source of the positive relationship is:

 The individual is willing to volunteer a truthful “yes” answer so long as the utility from doing so (i.e., the left side
of (17.15)) is at least as high as the utility of lying on the right side of (17.15).

« Suppose now that Pr(Alyes) increases. That reduces the utility of telling the truth. To preserve indifference
between a truthful answer and a lie, Pr(A|no) must increase to reduce the utility of lying.

296 Chapter 17. Expected Utilities of Random Responses

Intermediate Quantitative Economics with Python

17.4.2 Drawing a Truth Border

We can deduce two things about the truth border:

» The truth border divides the space of conditional probabilities into two subsets: “truth telling” and “lying”. Thus,
sufficient privacy elicits a truthful answer, whereas insufficient privacy results in a lie. The truth border depends on
a respondent’s utility function.

o Assumptions in (17.11) and (17.11) are sufficient only to guarantee a positive slope of the truth border. The truth
border can have either a concave or a convex shape.

We can draw some truth borders with the following Python code:

x1 = np.arange (0, 1, 0.001)

yl = x1 - 0.4

X2 = np.arange(0.4**2, 1, 0.001)

y2 = (pow(x2, 0.5) — 0.4)**2

x3 = np.arange(0.4**0.5, 1, 0.001)

y3 = pow(x3**2 - 0.4, 0.5)

plt.figure(figsize=(12, 10))

plt.plot(x1l, yl, 'r-', label=r'Truth Border of: $U_i(Pr(A|r_1i),\phi_i)=-Pr(A|r_1i)+£f (\
ophi_1)$"')

plt.fill _between(xl, 0, yl, facecolor='red', alpha=0.05)

plt.plot (x2, y2, 'b-', label=r'Truth Border of: $U_i(Pr(A|r_1i),\phi_i)=-Pr(A|lr_1i)"
o+f (\phi_i)$")

plt.fill_between(x2, 0, y2, facecolor='blue', alpha=0.05)

plt.plot (x3, y3, 'y-', label=r'Truth Border of: $U_i(Pr(A|r_1i),\phi_i)=-\sqrt{Pr (A|r_
i) p+f (\phi_i)$")

plt.fill_between (x3, 0, y3, facecolor='green', alpha=0.05)

plt.plot(x1l, x1, ':', linewidth=2)

plt.x1im ([0, 11)

plt.ylim ([0, 1])

plt.xlabel ('Pr(Alyes) ")

plt.ylabel ('"Pr (A|no) ")

plt.text (0.42, 0.3, "Truth Telling", fontdict={'size':28, 'style':'italic'})
plt.text (0.8, 0.1, "Lying", fontdict={'size':28, 'style':'italic'})

plt.legend(loc=0, fontsize='large')
plt.title('Figure 1.1")
plt.show ()

17.4. Respondent’s Expected Utility 297

Intermediate Quantitative Economics with Python

o Figure 1.1
—— Truth Border of: Ui(Pr(A|r), @) = —PriA|r) + f(di)
—— Truth Border of: Ui(Pr(A|r), @) = —PrA|r)? + f(¢;)
Truth Border of: Ui(Pr(A|ri), ¢i) = —v Pr(A|ri) + f(g;)
0.8
0.6 |
<
&
0.4
Truth Telling
0.2
Lying
0.0 42 '
0.0 0.8 1.0

Pr{A]yes)

Figure 1.1 three types of truth border.

Without loss of generality, we consider the truth border:
U;(Pr(Alr;), ¢;) = —Pr(Alr;) + f(;)
and plot the “truth telling” and “lying area” of individual ¢ in Figure 1.2:

x1 = np.arange(0, 1, 0.001)
yl = x1 - 0.4

z1l = x1

z2 = 0
plt.figure(figsize=(12, 10))

plt.plot (x1, yl1,'r-',label=r'Truth Border of: $U_i(Pr(A|r_1i),\phi_i)=-Pr(A|r_1i)+f(\

sphi_i)$")
plt.plot(x1l, x1, ':', linewidth=2)

plt.fill_between(xl, yl, zl, facecolor='blue', alpha=0.05, label='truth telling')

plt.fill_between(x1, z2, yl, facecolor='green', alpha=0.05,
plt.xlim ([0, 17)
plt.ylim ([0, 17])

plt.xlabel ('Pr(Alyes) ")
plt.ylabel ('Pr(A|lno) ")

label="'lying")

(continues on next page)

298 Chapter 17. Expected Utilities of Random Responses

Intermediate Quantitative Economics with Python

(continued from previous page)

plt.text (0.5, 0.4, "Truth Telling", fontdict={'size':28, 'style':'italic'})
plt.text (0.8, 0.2, "Lying", fontdict={'size':28, 'style':'italic'})

plt.legend(loc=0, fontsize='large')
plt.title('Figure 1.2")
plt.show ()

Figure 1.2

1.0
—— Truth Border of: Ui(Pr(Alri), i) = —Pr(A|ri) + f{¢:)
truth telling
lying

0.8

0.6

Pr(Alno)

0.4 4

" Truth Telling

Lying

0.2 4

0.0+ . f T T
0.0 0.2 0.4 0.6 0.8 1.0

Pr{A]yes)

17.5 Utilitarian View of Survey Design

17.5.1 Iso-variance Curves

A statistician’s objective is
« to find a randomized response survey design that minimizes the bias and the variance of the estimator.

Given a design that ensures truthful answers by all respondents, Anderson(1976, Theorem 1) [Anderson, 1976] showed
that the minimum variance estimate in the two-response model has variance

7TA2(1*7TA)2 1 1

V(Pr(Alyes),Pr(Ano)) = - X Pr(Alyes) — 7. X T Pr(Alno)

(17.17)

17.5. Utilitarian View of Survey Design 299

Intermediate Quantitative Economics with Python

where the random sample with replacement consists of 7 individuals.
We can use Expression (17.17) to draw iso-variance curves.

The following inequalities restrict the shapes of iso-variance curves:

dPr(Ano) _ Ta—Pr(4no) _ (17.18)
d Pr(Alyes) constant variance Pr(AlyeS) o 7TA .
d2 Pr(A 2 —Pr(A
& Pr(Alno) _ _Zma = PrAino)] _, (17.19)
d Pr(A|yes) constant variance [PI‘(A|yeS) - ﬂ—A]

From expression (17.17), (17.18) and (17.19) we can see that:
« Variance can be reduced only by increasing the distance of Pr(A|yes) and/or Pr(A|no) from r 4.

« Iso-variance curves are always upward-sloping and concave.

17.5.2 Drawing Iso-variance Curves

We use Python code to draw iso-variance curves.
The pairs of conditional probabilities can be attained using Warner’s (1965) model.
Note that:

« Any point on the iso-variance curves can be attained with the unrelated question model as long as the statistician
can completely control the model design.

o Warner’s (1965) original randomized response model is less flexible than the unrelated question model.

class Iso_Variance:
def _ init__ (self, pi, n):
self.pi = pi
self.n = n

def plotting_iso_variance_curve (self):
pi = self.pi
n = self.n

nv = np.array([0.27, 0.34, 0.49, 0.74, 0.92, 1.1, 1.47, 2.94, 14.7])
X = np.arange (0, 1, 0.001)

x0 = np.arange(pi, 1, 0.001)

x2 = np.arange (0, pi, 0.001)

yl = [pi for i in x0]

y2 [pi for i in x2]

v0 1/ (1 + (x0 * (1 - pi)**2) / ((1 - x0) * pi**2))

plt.figure(figsize=(12, 10))

plt.plot (x0, y0, 'm-', label='Warner')

plt.plot(x, x, 'c:', linewidth=2)

plt.plot (x0, y1,'c:', linewidth=2)

plt.plot(y2, x2, 'c:', linewidth=2)

for i in range(len(nv)):
y = pli - (pi**2 * (1 - pi)**2) / (n * (nv[i] / n) * (x0 - pi + 1e-8))
plt.plot (x0, y, 'k——', alpha=1 - 0.07 * i, label=f'V{i+l}")

plt.x1im ([0, 11)

plt.ylim([0, 0.5])

plt.xlabel ('Pr (Alyes) ")

(continues on next page)

300 Chapter 17. Expected Utilities of Random Responses

Intermediate Quantitative Economics with Python

(continued from previous page)

plt.ylabel ('Pr(A|no) ")
plt.legend(loc=0, fontsize='large')
0.28, "High Var", fontdict={'size':15, 'style':'italic'})
'style':"'italic'})

plt.text (0.32,
fontdict={'"'size':15,

plt.text (0.91, 0.01,
plt.title('Figure 2'")
plt.show ()

"Low Var",

Properties of iso-variance curves are:
« All points on one iso-variance curve share the same variance
» From V] to Vj, the variance of the iso-variance curve increase monotonically, as colors brighten monotonically

Suppose the parameters of the iso-variance model follow those in Ljungqvist [Ljungqvist, 1993], which are:

e 7=0.3
o« n =100
Then we can plot the iso-variance curve in Figure 2:

Iso_Variance (pi=0.3, n=100)

var =
var.plotting_iso_variance_curve ()
Figure 2
0.5 .
— Warner
-—= V1
-—= V2
== \3
== V4
=== \/5
0.4 ——— V6
=== 7
-==\/8
=== \9
0_3_‘.............‘....................._‘_.._.'_.._._.:.._.4_._.;._.._._.1.7..7.::._.._._.
ighVar ___--=-=—"""7"
P Lot
_— S ==
S e
= s ===
< y T e
& ! -~ =T =TT
,F o P =TT e
f - - e e
I e /4” " = T
0.2 ! e - - - -—"
I P - - -
/ ” - - ‘J,
] / e - - -
I s ’ - - - -
I / s ~ e -~ -
’ ’ - - -
I Fa < » - -
I ¥ ’ # - -
I 4 ’ 7 # - -
I3 P , e -~ "ni
! I Fd # ,f -
1 "’ 7 Fd /’ -
I ’ ’ P s PR >
1 K ’ ; - - -
0.1 H ! / ;o ’ ¢ -
=1 I A ’ P ’ -’ -
] 1 h oy / s -~
H ! i L / P .
Y i i roy P -
-1] ! / r -
H ! F] 4 7 - Ll
. I I} ’ 1’ s ’ e -
| /] [, / ’ , e
. I I r 4 -
b ! oo/ /7 . e
al] I] J 7 P P
H / oo / ! -
. = : : L / ;’ .c’ e Vaf'
J | I I ! [! ’ ‘ -
0.0 T T o £ T T £
0.0 0.2 0.4 0.6 0.8 1.0
Pr(Alyes)

17.5. Utilitarian View of Survey Design

Intermediate Quantitative Economics with Python

17.5.3 Optimal Survey

A point on an iso-variance curves can be attained with the unrelated question design.
We now focus on finding an “optimal survey design” that
o Minimizes the variance of the estimator subject to privacy restrictions.
To obtain an optimal design, we first superimpose all individuals’ truth borders on the iso-variance mapping.
To construct an optimal design

« The statistician should find the intersection of areas above all truth borders; that is, the set of conditional probabil-
ities ensuring truthful answers from all respondents.

« The point where this set touches the lowest possible iso-variance curve determines an optimal survey design.

Consquently, a minimum variance unbiased estimator is pinned down by an individual who is the least willing to volunteer
a truthful answer.

Here are some comments about the model design:

« An individual’s decision of whether or not to answer truthfully depends on his or her belief about other respondents’
behavior, because this determines the individual’s calculation of Pr(A|yes) and Pr(A|no).

¢ An equilibrium of the optimal design model is a Nash equilibrium of a noncooperative game.

« Assumption (17.12) is sufficient to guarantee existence of an optimal model design. By choosing Pr(A|yes) and
Pr(Ajno) sufficiently close to each other, all respondents will find it optimal to answer truthfully. The closer are
these probabilities, the higher the variance of the estimator becomes.

« If respondents experience a large enough increase in expected utility from telling the truth, then there is no need to
use a randomized response model. The smallest possible variance of the estimate is then obtained at Pr(A|yes) = 1
and Pr(A|no) = 0 ; that is, when respondents answer truthfully to direct questioning.

» A more general design problem would be to minimize some weighted sum of the estimator’s variance and bias. It
would be optimal to accept some lies from the most “reluctant” respondents.

17.6 Criticisms of Proposed Privacy Measures

We can use a utilitarian approach to analyze some privacy measures.

We'll enlist Python Code to help us.

17.6.1 Analysis of Method of Lanke’s (1976)

Lanke (1976) recommends a privacy protection criterion that minimizes:
max {Pr(A|yes), Pr(Ano)} (17.20)

Following Lanke’s suggestion, the statistician should find the highest possible Pr(A|yes) consistent with truth telling while
Pr(A|no) is fixed at 0. The variance is then minimized at point X in Figure 3.

However, we can see that in Figure 3, point Z offers a smaller variance that still allows cooperation of the respondents,
and it is achievable following our discussion of the truth border in Part III:

302 Chapter 17. Expected Utilities of Random Responses

Intermediate Quantitative Economics with Python

pi = 0.3
n = 100
nv = [0.27, 0.34, 0.49, 0.74, 0.92, 1.1, 1.47, 2.94, 14.7]

X = np.arange (0, 1, 0.001)

y =x - 0.4

z = X

x0 = np.arange(pi, 1, 0.001)
x2 = np.arange (0, pi, 0.001)
vyl = [pi for i in x0]

y2 = [pi for i in x2]

plt.figure (figsize=(12, 10))

plt.plot(x, %, 'c:', linewidth=2)

plt.plot (x0, yi1, 'c:', linewidth=2)

plt.plot(y2, x2, 'c:', linewidth=2)

plt.plot(x, vy, ' ', label='Truth Border')

plt.fill _between(x, y, 2z, facecolor='blue', alpha=0.05, label='truth telling')

plt.fill_between(x, 0, y, facecolor='green', alpha=0.05, label='lying"')

for i in range(len(nv)):
y = pi - (pi**2 * (1 - pi)**2) / (n * (nv[i] / n) * (x0 - pi + 1e-8))
plt.plot (x0, y, 'k—-', alpha=1 - 0.07 * i, label=f'V{i+l}")

r—

plt.scatter(0.498, 0.1, c='b', marker='*', label='Z', s=150)

plt.scatter (0.4, 0, c='y', label='X', s=150)

plt.x1im ([0, 11])

plt.ylim ([0, 0.5])

plt.xlabel ('Pr(Alyes)")

plt.ylabel ('"Pr (A|no) ")

plt.text (0.45, 0.35, "Truth Telling", fontdict={'size':28, 'style':'italic'})
plt.text (0.85, 0.35, "Lying", fontdict = {'size':28, 'style':'italic'})
plt.text (0.515, 0.095, "Optimal Design", fontdict={'size':16,'color':'b'})
plt.legend(loc=0, fontsize='large')

plt.title('Figure 3'")

plt.show ()

17.6. Criticisms of Proposed Privacy Measures 303

Intermediate Quantitative Economics with Python

Figure 3

0.5 -

—— Truth Border
truth telling
lying

-—= V1

-—= V2

--= V3

041 ——- V4

-—-= V5

=== V6

== N7

-== V8

== VO

03{ % Z
X g

Pr(A|no)

0.2

0.1

0.0 + ‘
0.0 0.2

Pr{A]yes)

17.6.2 Method of Leysieffer and Warner (1976)

Leysieffer and Warner (1976) recommend a two-dimensional measure of jeopardy that reduces to a single dimension
when there is no jeopardy in a ‘no’ answer”, which means that

Pr(yes|A) =1
and
Pr(Ajno) =0

This is not an optimal choice under a utilitarian approach.

304 Chapter 17. Expected Utilities of Random Responses

Intermediate Quantitative Economics with Python

17.6.3 Analysis on the Method of Chaudhuri and Mukerjee’s (1988)

[Chadhuri and Mukerjee, 1988]

Chaudhuri and Mukerjee (1988) argued that the individual may find that since “yes” may sometimes relate to the sensitive
group A, a clever respondent may falsely but safely always be inclined to respond “no”. In this situation, the truth border
is such that individuals choose to lie whenever the truthful answer is “yes” and

Pr(Ajno) =0

Here the gain from lying is too high for someone to volunteer a “yes” answer.

This means that
U, (Pr(Alyes), truth) < U; (Pr(A|no), lie)

in any situation always.

As a result, there is no attainable model design.

However, under a utilitarian approach there should exist other survey designs that are consistent with truthful answers.
In particular, respondents will choose to answer truthfully if the relative advantage from lying is eliminated.

We can use Python to show that the optimal model design corresponds to point Q in Figure 4:

def f (x):
if x < 0.16:
return 0

else:
return (pow(x, 0.5) - 0.4)**2
pi = 0.3
n = 100
nv = [0.27, 0.34, 0.49, 0.74, 0.92, 1.1, 1.47, 2.94, 14.7]

X = np.arange (0, 1, 0.001)
= [f(i) for i in x]
z = X
x0 = np.arange(pi, 1, 0.001)
x2 = np.arange (0, pi, 0.001)

vyl = [pi for i in x0]

y2 = [pi for i in x2]

x3 = np.arange(0.16, 1, 0.001)
y3 = (pow(x3, 0.5) — 0.4)**2

plt.figure(figsize=(12, 10))
plt.plot(x, x, 'c:', linewidth=2)
plt.plot (x0, y1,'c:', linewidth=2)
plt.plot(y2, x2,'c:', linewidth=2)
plt.plot (x3, y3,'b-', label='Truth Border')
plt.fill_between(x, y, z, facecolor='blue', alpha=0.05, label='Truth telling')
plt.fill _between(x3, 0, y3,facecolor='green', alpha=0.05, label='Lying')
for i in range(len(nv)):
y = pi - (pi**2 * (1 - pi)**2) / (n * (av[i] / n) * (x0 - pi + 1le-8))
plt.plot (x0, y, 'k——', alpha=1 - 0.07 * i, label=f'V{i+l}")
plt.scatter(0.61, 0.146, c='r', marker='*', label='Z', s=150)
plt.x1im ([0, 11)
plt.ylim ([0, 0.5])
plt.xlabel ('Pr(Alyes) ")
(continues on next page)

17.6. Criticisms of Proposed Privacy Measures 305

Intermediate Quantitative Economics with Python

plt.ylabel ('Pr (A|no) ")

(continued from previous page)

plt.text (0.45, 0.35, "Truth Telling", fontdict={'size':28, 'style':'italic'})
plt.text (0.8, 0.1, "Lying", fontdict={'size':28, 'style':'italic'})
plt.text (0.63, 0.141, "Optimal Design", fontdict={'size':16,'color':'r'})

plt.legend(loc=0, fontsize='large')
plt.title('Figure 4")

plt.show ()
Figure 4
0.5 -
—— Truth Border
Truth telling
Lying
-—- V1
-—— W2
--- V3
041 ——- V4
--- V5
--- V6 H
W Truth Telling
--- V8
--- V9
0.3 1 * Z .7..'”””“””“”””“””“”””“'“”“”““"“”””“_'_“_'_','_'_'L'_”_l'—”—'—'l'—“—'-‘
o e
e S s e S e
= | s s e T
= T . o Sl
0.2
f”’ ”ﬂ"’ e
OEmeaI Design L
e /f" .
f’ ‘/'
0.1 -~ Ly’ng 7
I” t”
I,” d”’
5 -~ ’,4"
f’/ ,’I,’ .o”’
7’ -
1, //’ ,’z"
0.0+ ‘ : ; £ < —e
0.0 0.2 0.4 0.6 0.8 1.0

17.6.4 Method of Greenberg et al. (1977)

[Greenberg et al., 1977]

Pr{A]yes)

Greenberg et al. (1977) defined the hazard for an individual in A as the probability that he or she is perceived as belonging

to A:
Pr(yes|A) x Pr(Alyes)
The hazard for an individual who does not belong to A is

Pr(yes|A") x Pr(Alyes)

+ Pr(no|A) x Pr(A|no) (17.21)

+ Pr(no|A") x Pr(A|no) (17.22)

306

Chapter 17. Expected Utilities of Random Responses

Intermediate Quantitative Economics with Python

They also considered an alternative related measure of hazard that they said “is likely to be closer to the actual concern
felt by a respondent.”

Their “limited hazard” for an individual in A and A’ is

Pr(yes|A) x Pr(A|yes) (17.23)
and

Pr(yes|A") x Pr(Alyes) (17.24)
According to Greenberg et al. (1977), a respondent commits himself or herself to answer truthfully on the basis of a
probability in (17.21) or (17.23) before randomly selecting the question to be answered.
Suppose that the appropriate privacy measure is captured by the notion of “limited hazard” in (17.23) and (17.24).
Consider an unrelated question model where the unrelated question is replaced by the instruction “Say the word ‘no™,
which implies that

Pr(Alyes) =1

and it follows that:
« Hazard for an individual in A" is 0.
« Hazard for an individual in A can also be made arbitrarily small by choosing a sufficiently small Pr(yes|A).

Even though this hazard can be set arbitrarily close to 0, an individual in A will completely reveal his or her identity
whenever truthfully answering the sensitive question.

However, under utilitarian framework, it is obviously contradictory.

If the individuals are willing to volunteer this information, it seems that the randomized response design was not necessary
in the first place.

It ignores the fact that respondents retain the option of lying until they have seen the question to be answered.

17.7 Concluding Remarks

The justifications for a randomized response procedure are that
« Respondents are thought to feel discomfort from being perceived as belonging to the sensitive group.
« Respondents prefer to answer questions truthfully than to lie, unless it is too revealing.

If a privacy measure is not completely consistent with the rational behavior of the respondents, all efforts to derive an
optimal model design are futile.

A utilitarian approach provides a systematic way to model respondents’ behavior under the assumption that they maximize
their expected utilities.

In a utilitarian analysis:

« A truth border divides the space of conditional probabilities of being perceived as belonging to the sensitive group,
Pr(Alyes) and Pr(A|no), into the truth-telling region and the lying region.

« The optimal model design is obtained at the point where the truth border touches the lowest possible iso-variance
curve.

A practical implication of the analysis of [Ljungqvist, 1993] is that uncertainty about respondents’ demands for privacy
can be acknowledged by choosing Pr(A|yes) and Pr(A|no) sufficiently close to each other.

17.7. Concluding Remarks 307

Intermediate Quantitative Economics with Python

308 Chapter 17. Expected Utilities of Random Responses

Part 111

Bayes Law

309

CHAPTER
EIGHTEEN

NON-CONJUGATE PRIORS

O GprU

This lecture was built using a machine with the latest CUDA and CUDANN frameworks installed with access to a
GPU.

To run this lecture on Google Colab, click on the “play” icon top right, select Colab, and set the runtime environment
to include a GPU.

To run this lecture on your own machine, you need to install the software listed following this notice.

'pip install numpyro jax

This lecture is a sequel to the Two Meanings of Probability.

That lecture offers a Bayesian interpretation of probability in a setting in which the likelihood function and the prior
distribution over parameters just happened to form a conjugate pair in which

« application of Bayes’ Law produces a posterior distribution that has the same functional form as the prior

Having a likelihood and prior that are conjugate can simplify calculation of a posterior, facilitating analytical or nearly
analytical calculations.

But in many situations the likelihood and prior need not form a conjugate pair.

« after all, a person’s prior is his or her own business and would take a form conjugate to a likelihood only by remote
coincidence

In these situations, computing a posterior can become very challenging.

In this lecture, we illustrate how modern Bayesians confront non-conjugate priors by using Monte Carlo techniques that
involve

« first cleverly forming a Markov chain whose invariant distribution is the posterior distribution we want

« simulating the Markov chain until it has converged and then sampling from the invariant distribution to approximate
the posterior

We shall illustrate the approach by deploying a powerful Python library, NumPyro that implements this approach.
As usual, we begin by importing some Python code.

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt
import scipy.stats as st

(continues on next page)

311

https://colab.research.google.com/
https://num.pyro.ai/en/stable/getting_started.html

Intermediate Quantitative Economics with Python

(continued from previous page)

from typing import NamedTuple, Sequence
import jax.numpy as Jjnp
from jax import random

import numpyro

from numpyro import distributions as dist

import numpyro.distributions.constraints as constraints
from numpyro.infer import MCMC, NUTS, SVI, Trace_ELBO
from numpyro.optim import Adam

18.1 Unleashing MCMC on a binomial likelihood

This lecture begins with the binomial example in the Two Meanings of Probability.

That lecture computed a posterior
« analytically via choosing the conjugate priors,

This lecture instead computes posteriors
» numerically by sampling from the posterior distribution through MCMC methods, and
« using a variational inference (VI) approximation.

We use numpy ro with assistance from jax to approximate a posterior distribution.

We use several alternative prior distributions.

We compare computed posteriors with ones associated with a conjugate prior as described in Two Meanings of Probability.

18.1.1 Analytical posterior

Assume that the random variable X ~ Binom (n,).

This defines a likelihood function

n!
L(Y]0) = Prob(X = k|0) = (!> OF (1 —)"+

kl(n —k)!
where Y = k is an observed data point.

We view 6 as a random variable for which we assign a prior distribution having density f(9).

We will try alternative priors later, but for now, suppose the prior is distributed as § ~ Beta (o, 5), i.e.,

a—1 _ p\Bs-1
F(6) = Prob(6) egzag))

We choose this as our prior for now because we know that a conjugate prior for the binomial likelihood function is a beta
distribution.
After observing k successes among [N sample observations, the posterior probability distribution of 6 is

Prob(6, k) _ Prob(k|0)Prob(f) Prob(k|6)Prob(0)

Prob(0]k) = = =
Prob(k Prob(k !
rob(k) rob (k) Ji; Prob(k|6)Prob(6)dd
a—-1(1_p\B-1
__ et —
T olyN ok 8271(1-6)81
b (7) @ = 6N kek o

312 Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

(1 _ 9)ﬁ+N7k710a+k71

j(“)l(l — 9)B+N7k719a+k71d9.

Thus,
Prob(0|k) ~ Beta(a+ k, 3+ N — k)

The analytical posterior for a given conjugate beta prior is coded in the following

def simulate_draw (6, n):
"""Draws a Bernoulli sample of size n with probability P(Y=1) = @"""
rand_draw = np.random.rand(n)
draw = (rand_draw < 8) .astype (int)
return draw

def analytical_beta_posterior (data, a0, B0):

mmn

Computes analytically the posterior distribution
with beta prior parametrized by (a, B)
given # num observations

Parameters

num : int.

the number of observations after which we calculate the posterior
a0, BO : float.

the parameters for the beta distribution as a prior

Returns

The posterior beta distribution

mmn

num = len (data)

up_num = data.sum()

down_num = num — up_num

return st.beta (a0 + up_num, B0 + down_num)

18.1.2 Two ways to approximate posteriors

Suppose that we don’t have a conjugate prior.
Then we can’t compute posteriors analytically.

Instead, we use computational tools to approximate the posterior distribution for a set of alternative prior distributions
using numpyro.

We first use the Markov Chain Monte Carlo (MCMC) algorithm.

We implement the NUTS sampler to sample from the posterior.

In that way we construct a sampling distribution that approximates the posterior.

After doing that we deploy another procedure called Variational Inference (VI).

In particular, we implement Stochastic Variational Inference (SVI) machinery in numpyro.

The MCMC algorithm supposedly generates a more accurate approximation since in principle it directly samples from
the posterior distribution.

18.1. Unleashing MCMC on a binomial likelihood 313

Intermediate Quantitative Economics with Python

But it can be computationally expensive, especially when dimension is large.

A VI approach can be cheaper, but it is likely to produce an inferior approximation to the posterior, for the simple reason
that it requires guessing a parametric guide functional form that we use to approximate a posterior.

This guide function is likely at best to be an imperfect approximation.

By paying the cost of restricting the putative posterior to have a restricted functional form, the problem of approximating
a posterior is transformed to a well-posed optimization problem that seeks parameters of the putative posterior that
minimize a Kullback-Leibler (KL) divergence between true posterior and the putative posterior distribution.

« minimizing the KL divergence is equivalent to maximizing a criterion called the Evidence Lower Bound (ELBO),
as we shall verify soon.

18.2 Prior distributions

In order to be able to apply MCMC sampling or VI, numpy ro requires that a prior distribution satisfy special properties:
« we must be able to sample from it;
« we must be able to compute the log pdf pointwise;
« the pdf must be differentiable with respect to the parameters.
We'll want to define a distribution class.
We will use the following priors:
« a uniform distribution on [6, 5], where 0 < 0 < 0 < 1.
o a truncated log-normal distribution with support on [0, 1] with parameters (u, o).

- To implement this, let Z ~ N (u, o) and Z be truncated normal with support [—00,log(1)], then exp(Z) has
a log normal distribution with bounded support [0, 1]. This can be easily coded since numpyro has a built-
in truncated normal distribution, and numpyro’s TransformedDistribution class that includes an
exponential transformation.

« ashifted von Mises distribution that has support confined to [0, 1] with parameter (u,).

- Let X ~ vonMises(0, k). We know that X has bounded support [—7, w]. We can define a shifted von
Mises random variable X = a + bX where a = 0.5,b = 1/(2) so that X is supported on [0, 1].

- This can be implemented using numpyro’s TransformedDistribution class with its Affine-
Transform method.

« atruncated Laplace distribution.

- We also considered a truncated Laplace distribution because its density comes in a piece-wise non-smooth
form and has a distinctive spiked shape.

- The truncated Laplace can be created using numpyro’s TruncatedDistribution class.

def truncated_log_normal_trans(loc, scale):
Obtains the truncated log normal distribution
using numpyro's TruncatedNormal and ExpTransform
base_dist = dist.TruncatedNormal (
low=-jnp.inf, high=jnp.log(l), loc=loc, scale=scale
)

return dist.TransformedDistribution (

(continues on next page)

314 Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

(continued from previous page)

base_dist, dist.transforms.ExpTransform/()

def shifted_von_mises (k) :
"""Obtains the shifted von Mises distribution using AffineTransform
base_dist = dist.VonMises (0, x)
return dist.TransformedDistribution (
base_dist,
dist.transforms.AffineTransform(loc=0.5, scale=1 / (2 * Jnp.pi))

mrmn

def truncated_laplace(loc, scale):
"""Obtains the truncated Laplace distribution on [0,1]"""
base_dist = dist.Laplace(loc, scale)
return dist.TruncatedDistribution (base_dist, low=0.0, high=1.0)

18.2.1 Variational inference

Instead of directly sampling from the posterior, the variational inference method approximates an unknown posterior
distribution with a family of tractable distributions/densities.

It then seeks to minimize a measure of statistical discrepancy between the approximating and true posteriors.

Thus variational inference (VI) approximates a posterior by solving a minimization problem.

Let the latent parameter/variable that we want to infer be 6.

Let the prior be p(6) and the likelihood be p (Y]6).

We want p (0]Y).

Bayes’ rule implies

o)~ PO 210

p(Y) p(Y)

where
p(Y) = / p(Y | 6)p () do. (18.1)

The integral on the right side of (18.1) is typically difficult to compute.
Consider a guide distribution g, (¢)) parameterized by ¢ that we'll use to approximate the posterior.

We choose parameters ¢ of the guide distribution to minimize a Kullback-Leibler (KL) divergence between the approx-
imate posterior g, () and the posterior:

Dica(a(6:0) 1900 1Y) = - [a(eio)tog 2 2 ao

Thus, we want a variational distribution ¢ that solves

m;n Dy r(q(0;0) [p(0]Y))

18.2. Prior distributions 315

Intermediate Quantitative Economics with Python

Note that
Dicaa(6:6) 160 | V) =~ [atts 0)tog =
p(6,Y)
-~ o
p(0,Y

=~ atoyios s

A [i

/ p(qi,;)/) + / (0)logp(Y)do

__ / ®lo gpif(’;)/) 40+ log p(Y)
108p() = Dic a(9:0) |90 | V) + [50108 20 L
For observed data Y, p(6,Y") is a constant, so minimizing KL divergence is equivalent to maximizing
ELBO = / 44(6) log p;j’(;;) d9 = E,,) [logp(8,Y) —logq,(6)] (18.2)

Formula (18.2) is called the evidence lower bound (ELBO).
A standard optimization routine can be used to search for the optimal ¢ in our parametrized distribution g, (6).
The parameterized distribution g () is called the variational distribution.

We can implement Stochastic Variational Inference (SVI) in numpyro using the Adam gradient descent algorithm to
approximate the posterior.

We use two sets of variational distributions: Beta and TruncatedNormal with support [0, 1]
o Learnable parameters for the Beta distribution are («, 3), both of which are positive.

« Learnable parameters for the Truncated Normal distribution are (loc, scale).

© Note

We restrict the truncated Normal parameter ‘loc’ to be in the interval [0, 1]

18.3 Implementation

We have constructed a Python class BayesianInference that requires the following arguments to be initialized:
e param: a tuple/scalar of parameters dependent on distribution types
e name_dist: a string that specifies distribution names
The (param, name_dist) pair includes:
e (a, B, ‘beta’)
e (lower_bound, upper_bound, ‘uniform’)

« (loc, scale, ‘lognormal’)

316 Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

- Note: This is the truncated log normal.

 (k, ‘vonMises’), where x denotes concentration parameter, and center location is set to 0.5. Using numpy ro, this
is the shifted distribution.

« (loc, scale, ‘laplace’)
- Note: This is the truncated Laplace
The class BayesianInference has several key methods :
e sample_prior:
— This can be used to draw a single sample from the given prior distribution.
e show_prior
- Plots the approximate prior distribution by repeatedly drawing samples and fitting a kernel density curve.
e mcmc_sampling:
- INPUT: (data, num_samples, num_warmup=1000)
- Takes a jnp.array data and generates MCMC sampling of posterior of size num_samples.
e svi_run:

INPUT: (data, guide_dist, n_steps=10000)

guide_dist = ‘normal’ - use a truncated normal distribution as the parametrized guide

guide_dist = ‘beta’ - use a beta distribution as the parametrized guide

RETURN: (params, losses) - the learned parameters in a dict and the vector of loss at each step.

class BayesianInference (NamedTuple) :
mrrn

Parameters
param : tuple.
a tuple object that contains all relevant parameters for the distribution
name_dist : sStr.
name of the distribution - 'beta', 'uniform', 'lognormal', 'vonMises',
o 'laplace'

rng_key : jax.random.PRNGKey
PRNG key for random number generation.
mrrmn
param: tuple
name_dist: str
rng_key: random.PRNGKey

def create_bayesian_inference (
param: tuple,
name_dist: str,
seed: int = 0
) —> BayesianInference:
"""Factory function to create a BayesianInference instance"""

rng_key = random.PRNGKey (seed)

return BayesianInference (
param=param,
name_dist=name_dist,
(continues on next page)

18.3. Implementation 317

Intermediate Quantitative Economics with Python

def

def

(continued from previous page)

rng_key=rng_key

sample_prior (model: BayesianInference):
"""Define the prior distribution to sample from in numpyro models.'"""
if model.name_dist == "beta'":

unpack parameters

a0, BO = model.param

sample = numpyro.sample (

"theta", dist.Beta (a0, B0), rng_key=model.rng_key

elif model.name_dist == "uniform":
unpack parameters
1b, ub = model.param
sample = numpyro.sample (
"theta", dist.Uniform(lb, ub), rng_key=model.rng_key

elif model.name_dist == "lognormal":
unpack parameters
loc, scale = model.param
sample = numpyro.sample (
"theta",
truncated_log_normal_trans (loc, scale),
rng_key=model.rng_key

elif model.name_dist == "vonMises":
unpack parameters
k = model.param
sample = numpyro.sample (
"theta", shifted_von_mises(x), rng_key=model.rng_key

elif model.name_dist == "laplace":
unpack parameters
loc, scale = model.param
sample = numpyro.sample (
"theta", truncated_laplace(loc, scale), rng_key=model.rng_key

return sample

show_prior(
model: BayesianInference, size=1e5, bins=20, disp_plot=1

mrn

Visualizes prior distribution by sampling from prior
and plots the approximated sampling distribution

mrmn

with numpyro.plate("show_prior", size=size):

sample = sample_prior (model)
to JAX array
sample_array = jnp.asarray (sample)

(continues on next page)

318

Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

(continued from previous page)

plot histogram and kernel density
if disp_plot == 1:
sns.displot (
sample_array,
kde=True,
stat="density",
bins=bins,
height=5,
aspect=1.5
)
plt.x1im(0, 1)
plt.show()
else:
return sample_array

def set_model (model: BayesianInference, data):
Define the probabilistic model by specifying prior,
conditional likelihood, and data conditioning
mirrmn
theta = sample_prior (model)
output = numpyro.sample (
"obs", dist.Binomial (len (data), theta), obs=jnp.sum(data)

def mcmc_sampling (
model: BayesianInference, data, num_samples, num_warmup=1000

mmn

Computes numerically the posterior distribution

with beta prior parametrized by (a0, B0)

given data using MCMC

data = jnp.array(data, dtype=float)

nuts_kernel = NUTS (set_model)

mcmc = MCMC (
nuts_kernel,
num_samples=num_samples,
num_warmup=num_warmup,
progress_bar=False,

)

mcmc . run (model.rng_key, model=model, data=data)

samples = mcmc.get_samples () ["theta"]
return samples

arguments in this function are used to align with the arguments in set_model ()
this is required by svi.run()
def beta_guide (model: BayesianInference, data):
won
Defines the candidate parametrized variational distribution
that we train to approximate posterior with numpyro
Here we use parameterized beta
(continues on next page)

18.3. Implementation 319

Intermediate Quantitative Economics with Python

(continued from previous page)

mmn

a_g = numpyro.param("alpha g", 10, constraint=constraints.positive)
B_a numpyro.param("beta g", 10, constraint=constraints.positive)

numpyro.sample ("theta", dist.Beta(a_qg, B_q))

similar with beta_guide ()

def

def

def

truncnormal_ guide (model: BayesianInference, data):
won
Defines the candidate parametrized variational distribution
that we train to approximate posterior with numpyro
Here we use truncated normal on [0,1]
mirrmn
loc = numpyro.param("loc", 0.5, constraint=constraints.interval (0.0,
scale = numpyro.param("scale", 1, constraint=constraints.positive)
numpyro.sample (
"theta",
dist.TruncatedNormal (loc, scale, low=0.0, high=1.0)

svi_init (model: BayesianInference, guide_dist, 1r=0.0005):
"""Initiate SVI training mode with Adam optimizer"""

adam_params = {"lr": 1r}

if guide_dist == "beta":
optimizer = Adam(step_size=lr)
svi = SVI(

set_model, beta_guide, optimizer, loss=Trace_ELBO()

)

elif guide_dist == "normal":
optimizer = Adam(step_size=1r)
svi = SVI(

set_model, truncnormal_guide, optimizer, loss=Trace_ELBO()

)

else:
print ("WARNING: Please input either 'beta' or 'normal'")
svi = None

return svi

svi_run (model: BayesianInference, data, guide_dist, n_steps=10000) :

mmn

Runs SVI and returns optimized parameters and losses

Returns
params : the learned parameters for guide
losses : a vector of loss at each step

mmn

initiate SVI
svi = svi_init (model, guide_dist)

data = jnp.array(data, dtype=float)

1.0))

(continues on next page)

320

Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

(continued from previous page)

result = svi.run/(
model.rng_key, n_steps, model, data, progress_bar=False

)

params = dict (

(key, jnp.asarray(value)) for key, value in result.params.items ()
)
losses = Jjnp.asarray (result.losses)

return params, losses

18.4 Alternative prior distributions

Let’s see how well our sampling algorithm does in approximating
« alog normal distribution
« a uniform distribution

To examine our alternative prior distributions, we’ll plot approximate prior distributions below by calling the
show_prior method.

truncated log normal
example_1ln = create_bayesian_inference (param=(0, 2), name_dist="lognormal")
show_prior (example_1ln, size=100000, bins=20)

W1124 03:48:15.648743 3798 cuda_executor.cc:1802] GPU interconnect information.
~not available: INTERNAL: NVML doesn't support extracting fabric info or NVLink..
~1is not used by the device.

W1124 03:48:15.652328 3733 cuda_executor.cc:1802] GPU interconnect information.
wnot available: INTERNAL: NVML doesn't support extracting fabric info or NVLink.
~1is not used by the device.

truncated uniform
example_un = create_bayesian_inference (param=(0.1, 0.8), name_dist="uniform")
show_prior (example_un, size=100000, bins=20)

The above graphs show that sampling seems to work well with both distributions.

Now let’s see how well things work with von Mises distributions.

shifted von Mises
example_vm = create_bayesian_inference (param=10, name_dist="vonMises")
show_prior (example_vm, size=100000, bins=20)

The graphs look good too.

Now let’s try with a Laplace distribution.

truncated Laplace
example_lp = create_bayesian_inference (param=(0.5, 0.05), name_dist="laplace")
show_prior (example_lp, size=100000, bins=20)

18.4. Alternative prior distributions 321

Intermediate Quantitative Economics with Python

Density

0.6 0.8 1.0

0.4

0.0 0.2

Fig. 18.1: Truncated log normal distribution

Chapter 18. Non-Conjugate Priors

322

Intermediate Quantitative Economics with Python

1.4 4

1.2 4

1.0+

0.8

Density

0.6

0.4

0.2

0.0 -
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.2: Truncated uniform distribution

18.4. Alternative prior distributions 323

Intermediate Quantitative Economics with Python

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.3: Shifted von Mises distribution

324 Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

B -

ﬁ -
oy
‘n
2

4 4

2 -
u I I 1
0.0 0.2 0.4 0.6 0.8 1.0
Fig. 18.4: Truncated Laplace distribution
325

18.4. Alternative prior distributions

Intermediate Quantitative Economics with Python

Having assured ourselves that our sampler seems to do a good job, let’s put it to work in using MCMC to compute
posterior probabilities.

18.5 Posteriors via MCMC and VI

We construct a class BayesianInferencePlot toimplement MCMC or VI algorithms and plot multiple posteriors
for different updating data sizes and different possible priors.

This class takes as inputs the true data generating parameter 9, a list of updating data sizes for multiple posterior plotting,
and a defined and parametrized BayesianInference class.

It has two key methods:

e BayesianInferencePlot.mcmc_plot () takes desired MCMC sample size as input and plots the output

posteriors together with the prior defined in BayesianInference class.

e BayesianInferencePlot.svi_plot () takesdesired VI distribution class (‘beta’ or ‘normal’) as input and

plots the posteriors together with the prior.

class BayesianInferencePlot (NamedTuple) :

mmn

Easily implement the MCMC and VI inference for a given instance of

BayesianInference class and plot the prior together with multiple posteriors

Parameters
6 : float.

the true DGP parameter
N list : 1list.

a list of sample size
bayesian_model : BayesianInference.

a class initiated using create_bayesian_inference ()
binwidth : float.

plotting parameter for histogram bin width
linewidth : float.

plotting parameter for line width
colorlist : 1list.

list of colors for plotting
N_max : 1int.

maximum sample size
data : np.ndarray.

generated data array
mirrn
8: float
N_list: Sequence[int]
bayesian_model: BayesianInference
binwidth: float
linewidth: float
colorlist: list
N_max: int
data: np.ndarray

def create_bayesian_inference_plot (

9: float,

(continues on next page)

326

Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

(continued from previous page)
N_list: Sequence[int],
bayesian_model: BayesianInference,

*
14

binwidth: float = 0.02,
linewidth: float = 0.05,
) —> BayesianInferencePlot:
"""Factory function to create a BayesianInferencePlot instance"""

colorlist = sns.color_palette(n_colors=len(N_list))
N_max = int (max(N_1list))
data = simulate_draw (6, N_max)
return BayesianInferencePlot (
6=6,
N_list=1list (map(int, N_list)),
bayesian_model=bayesian_model,
binwidth=binwidth,
linewidth=1linewidth,
colorlist=colorlist,
N_max=N_max,
data=data,

def mcmc_plot (
plot_model: BayesianInferencePlot, num_samples, num_warmup=1000

fig, ax = plt.subplots /()

plot prior

prior_sample = show_prior (
plot_model.bayesian_model, disp_plot=0
)

sns.histplot (
data=prior_sample,
kde=True,
stat="density",
binwidth=plot_model.binwidth,
color="#4C4E52",
linewidth=plot_model.linewidth,
alpha=0.1,
ax=ax,
label="Prior distribution",

plot posteriors
for id, n in enumerate(plot_model.N_list):
samples = mcmc_sampling (
plot_model .bayesian_model,
plot_model.datal:n],
num_samples,
num_warmup

sns.histplot (
samples,
kde=True,
stat="density",
binwidth=plot_model .binwidth,
(continues on next page)

18.5. Posteriors via MCMC and VI 327

Intermediate Quantitative Economics with Python

def

def

(continued from previous page)
linewidth=plot_model.linewidth,
alpha=0.2,
color=plot_model.colorlist[id - 1],
label=f"Posterior with $n={n}s",
)
ax.legend(loc="upper left")
plt.x1im (0, 1)
plt.show ()

svi_fitting(guide_dist, params):
"""pit the beta/truncnormal curve using parameters trained by SVI."""
create x axis
xaxis = jnp.linspace (0, 1, 1000)
if guide_dist == "beta":
y = st.beta.pdf (xaxis, a=params["alpha g"], b=params|["beta g"])

elif guide_dist == "normal":
rescale upper/lower bound. See Scipy's truncnorm doc
lower, upper = (0, 1)
loc, scale = params["loc"], params["scale"]
a, b = (lower - loc) / scale, (upper - loc) / scale

y = st.truncnorm.pdf (
xaxis, a=a, b=b, loc=loc, scale=scale
)

return (xaxis, vy)

svi_plot (
plot_model: BayesianInferencePlot, guide_dist, n_steps=2000

fig, ax = plt.subplots /()

plot prior
prior_sample = show_prior (plot_model.bayesian_model, disp_plot=0)
sns.histplot (
data=prior_sample,
kde=True,
stat="density",
binwidth=plot_model.binwidth,
color="#4C4E52",
linewidth=plot_model.linewidth,
alpha=0.1,
ax=ax,
label="Prior distribution",

plot posteriors
for id, n in enumerate (plot_model.N_list):
(params, losses) = svi_run/(
plot_model .bayesian_model, plot_model.datal[:n], guide_dist, n_steps
)
x, y = svi_fitting(guide_dist, params)
ax.plot (
Xy
yl
(continues on next page)

328

Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

alpha=1,
color=plot_model.colorlist[id - 17,
label=f"Posterior with $n={n}$",
)
ax.legend(loc="upper left")
plt.x1lim(0, 1)
plt.show ()
Let’s set some parameters that we’ll use in all of the examples below.
To save computer time at first, notice that we'll set mcmc_num_samples =

(Later, to increase accuracy of approximations, we’ll want to increase these.)

num_list = [5, 10, 50, 100, 1000]
mcmc_num_samples = 2000
svi_num_steps = 5000

6 is the data generating process
true_ 6 = 0.8

18.5.1 Beta prior and posteriors:

Let’s compare outcomes when we use a Beta prior.
For the same Beta prior, we shall
e compute posteriors analytically
« compute posteriors using MCMC using numpyro.

» compute posteriors using VI using numpyro.

(continued from previous page)

2000 and svi_num_steps = 5000.

Let’s start with the analytical method that we described in this Two Meanings of Probability

first examine Beta prior

beta = create_bayesian_inference (param=(5, 5), name_dist="beta")

beta_plot = create_bayesian_inference_plot (true_6, num_list, beta)

plot analytical Beta prior and posteriors
xaxis = jnp.linspace (0, 1, 1000)
y_prior = st.beta.pdf (xaxis, 5, 5)

fig, ax = plt.subplots/()
plot analytical beta prior
ax.plot (xaxis, y_prior, label="Analytical Beta prior",

color="#4C4E52")

data, colorlist, N_list = beta_plot.data, beta_plot.colorlist, beta_plot.N_list

Plot analytical beta posteriors
for id, n in enumerate(N_list):

func = analytical_beta_posterior (datal:n], a0=5, BO=
y_posterior = func.pdf (xaxis)
ax.plot (

xaxis,

y_posterior,

S)

(continues on next page)

18.5. Posteriors via MCMC and VI

329

Intermediate Quantitative Economics with Python

(continued from previous page)
color=colorlist([id - 11,
label=f"Analytical Beta posterior with $n={nj}$",
)
ax.legend (loc="upper left")
plt.x1im (0, 1)

plt.show ()
—— Analytical Beta prior
30 1 —— Analytical Beta posterior withn=25 n
—— Analytical Beta posterior with n =10
254 —— Analytical Beta posterior with n =50
—— Analytical Beta posterior with n =100
70 4 —— Analytical Beta posterior with n =1000
15 ~
10 A
5 - \
0
T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.5: Analytical density (Beta prior)

Now let’s use MCMC while still using a beta prior.
We'll do this for both MCMC and VI.

mcmc_plot (
beta_plot, num_samples=mcmc_num_samples

)

svi_plot (
beta_plot, guide_dist="beta", n_steps=svi_num_steps

)

Here the MCMC approximation looks good.

But the VI approximation doesn’t look so good.

330 Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

357 Prior distribution
Posterior with n=15
30 4 Posterior with n= 10
Posterior with n= 50
25 - Posterior with n= 100
Posterior with n= 1000
= 20 -
=
(7]
g
15 4
10 4
5 —
0
0.0

Fig. 18.6: MCMC density (Beta prior)

« even though we use the beta distribution as our guide, the VI approximated posterior distributions do not closely
resemble the posteriors that we had just computed analytically.

(Here, our initial parameter for Beta guide is (0.5, 0.5).)

But if we increase the number of steps from 5000 to 100000 in VI as we now shall do, we’ll get VI-approximated posteriors
that will be more accurate, as we shall see next.

(Increasing the step size increases computational time though).

svi_plot (
beta_plot, guide_dist="beta", n_steps=100000

)

18.5. Posteriors via MCMC and VI 331

Intermediate Quantitative Economics with Python

—— Posterorwith n=5

5 1 —— Posterior with n= 10
—— Posteror with n= 50
—— Postenor with n= 100
4 4 —— Posterior with n= 1000
Prior distribution

Fary
3
g
2 .
l —
0
0.0
Fig. 18.7: SVI density (Beta prior, Beta guide)
1754 — Posterior with n=15
—— Postenor with n= 10
150 —— Postenor with n=50
’ —— Posterior with n= 100
—— Posteror with n= 1000
12.5 A Prior distribution
=
£10.0 1
g
7.5 1
5.0 1
2.5 1
0.0 I I T

0.0 0.2 0.4 0.6 0.8 1.0

332 Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

18.6 Non-conjugate prior distributions

Having assured ourselves that our MCMC and VI methods can work well when we have a conjugate prior and so can
also compute analytically, we next proceed to situations in which our prior is not a beta distribution, so we don’t have a
conjugate prior.

So we will have non-conjugate priors and are cast into situations in which we can’t calculate posteriors analytically.

18.6.1 Markov chain Monte Carlo

First, we implement and display MCMC.

We first initialize the BayesianInference classes and then can directly call BayesianInferencePlot to plot
both MCMC and SVI approximating posteriors.

Initialize BayesianInference classes

Try uniform

std_uniform = create_bayesian_inference (param=(0, 1), name_dist="uniform")
uniform = create_bayesian_inference (param=(0.2, 0.7), name_dist="uniform")

Try truncated log normal
lognormal = create_bayesian_inference (param=(0, 2), name_dist="lognormal")

Try Von Mises
vonmises = create_bayesian_inference (param=10, name_dist="vonMises")

Try Laplace
laplace = create_bayesian_inference (param=(0.5, 0.07), name_dist="laplace")

To conduct our experiments more concisely, here we define two experiment functions that will print the model information
and plot the result.

def plot_mcmc_experiment (
bayesian_model: BayesianInference,
true_6: float,
num_list: Sequence[int],
num_samples: int,
num_warmup: int = 1000,
description: str = ""

mmn

Helper function to run and plot MCMC experiments for a given Bayesian model

mmn

f"Parameters: {bayesian_model.param/\n"
f"Prior Dist: {bayesian_model.name_dist

)
if description:
print (description)

plot_model = create_bayesian_inference_plot (
true_6, num_list, bayesian_model

)

mcmc_plot (plot_model, num_samples=num_samples, num_warmup=num_warmup)

(continues on next page)

18.6. Non-conjugate prior distributions 333

Intermediate Quantitative Economics with Python

def plot_svi_experiment (
bayesian_model: BayesianInference,
true_06: float,
num_list: Sequence[int],
guide_dist: str,
n_steps: int,
description: str = ""

mmn

(continued from previous page)

Helper function to run and plot SVI experiments for a given Bayesian model

mmn

f"Parameters: {bayesian_model.param/\n"
f"Prior Dist: {bayesian_model.name_dist

)
if description:
print (description)

plot_model = create_bayesian_inference_plot (

true_6, num_list, bayesian_model

)

svi_plot (plot_model, guide_dist=guide_dist,

Uniform
plot_mcmc_experiment (
std_uniform,

true_86,
num_list,
mcmc_num_samples

= =INFO==
Parameters: (0, 1)
Prior Dist: uniform

plot_mcmc_experiment (
uniform,
true_6,
num_list,
mcmc_num_samples

Parameters: (0.2, 0.7)
Prior Dist: uniform

n_steps=n_steps)

In the situation depicted above, we have assumed a Uni form(6, 0) prior that puts zero probability outside a bounded

support that excludes the true value.

Consequently, the posterior cannot put positive probability above 6 or below 6.

Note how when the true data-generating 6 is located at 0.8 as it is here, when n gets large, the posterior concentrates on

the upper bound of the support of the prior, 0.7 here.

334

Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

Prior distribution

30 + Posterior with n=25
Posterior with n= 10
Posterior with n= 50

25 4
Posterior with n= 100
Posterior with n= 1000
20 4
=
(7]
=
& 15 1

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.8: MCMC density (uniform prior)

log normal
plot_mcmc_experiment (
lognormal,
true_6,
num_1list,
mcmc_num_samples

INFO
Parameters: (0, 2)
Prior Dist: lognormal

von Mises
plot_mcmc_experiment (
vonmises,
true_6,
num_list,
mcmc_num_samples,
description="\nNOTE: Shifted von Mises"

INFO
Parameters: 10
Prior Dist: vonMises

(continues on next page)

18.6. Non-conjugate prior distributions 335

Intermediate Quantitative Economics with Python

300 A

250

100 +

30 -

Prior distribution
Posterior with n=25
Posterior with n= 10
Posterior with n= 50
Posterior with n= 100
Posterior with n= 1000

0.0

0.2 0.4

0.6

0.8 1.0

Fig. 18.9: MCMC density (uniform prior)

NOTE: Shifted von Mises

Laplace

plot_mcmc_experiment (

laplace,
true_6,
num_list,

mcmc_num_samples

SS===== INFO=======
Parameters: (0.5, 0.07)
Prior Dist: laplace

(continued from previous page)

336

Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

Prior distribution

Posterior with n=25 ”
Posterior with n= 10
55 Posterior with n= 50
Posterior with n= 100

30 4

Posterior with n= 1000

20+

Density

0.0 0.2 0.4 0.6 0.8 1.0
Fig. 18.10: MCMC density (log normal prior)

18.6.2 Variational inference

To get more accuracy we will now increase the number of steps for Variational Inference (VI)

svi_num_steps = 50000

VI with a truncated normal guide

Uniform
plot_svi_experiment (
create_bayesian_inference (param=(0, 1), name_dist="uniform"),
true_86,
num_list,
"normal",
svi_num_steps

INFO
Parameters: (0, 1)
Prior Dist: uniform

log normal
plot_svi_experiment (

lognormal,
(continues on next page)

18.6. Non-conjugate prior distributions 337

Intermediate Quantitative Economics with Python

30 1 Prior distribution n
Posterior with n=15
55 Posterior with n= 10
Posterior with n= 50
Posterior with n= 100
20 A Posterior with n= 1000
=
(7]
E 15 -
10 -
5 —
D T T T) T
0.0 0.2 0.4 0.6 0.8 1.0
Fig. 18.11: MCMC density (von Mises prior)
(continued from previous page)
true_86,
num_list,
"normal",

svi_num_steps

INFO
Parameters: (0, 2)
Prior Dist: lognormal

Laplace
plot_svi_experiment (
laplace,
true_6,
num_list,
"normal",
svi_num_steps

= =INFO==
Parameters: (0.5, 0.07)
Prior Dist: laplace

338 Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

Prior distribution
30 Posterior with n=5 P
Posterior with n= 10
55 Posterior with n= 50
Posterior with n= 100
Posterior with n= 1000
20 4
=
(7]
=
& 15 -
10 4
4
5 —
D I T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.12: MCMC density (Laplace prior)

Variational inference with a Beta guide distribution

uniform
plot_svi_experiment (
std_uniform,

true_6,
num_list,
"beta",
svi_num_steps

= =INFO==
Parameters: (0, 1)
Prior Dist: uniform

log normal

plot_svi_experiment (
lognormal,
true_6,
num_list,
"beta",
svi_num_steps

18.6. Non-conjugate prior distributions 339

Intermediate Quantitative Economics with Python

30 1 —— Posterior with n=5 q
—— Postenor with n= 10
—— Posternor with n= 50
2571 Posterior with n= 100
—— Postenor with n= 1000
20 - Prior distribution
=
(7]
E 15 -
10 -
5 —
|
D I I I I
0.0 0.2 0.4 0.6 0.8 1.0
Fig. 18.13: SVI density (uniform prior, normal guide)
INFO
Parameters: (0, 2)

Prior Dist: lognormal

von Mises
plot_svi_experiment (
vonmises,
true_86,
num_list,
"beta",
svi_num_steps,
description="Shifted von Mises"

=INFO
Parameters: 10
Prior Dist: vonMises
Shifted von Mises

Laplace
plot_svi_experiment (
laplace,
true_86,
num_list,
"beta",
(continues on next page)

340 Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

30 — Posterior with n=25 n
—— Postenor with n= 10
—— Posternor with n= 50
254 —— Postenor with n= 100
—— Postenor with n= 1000
Prior distribution
20 4
=
£
8 15 4
10 4 /'
/i—\-‘
5 —
/i""-""‘-lq..________
0 T _=____-T _==-_| —_—
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.14: SVI density (log normal prior, normal guide)

(continued from previous page)

svi_num_steps

INFO
Parameters: (0.5, 0.07)
Prior Dist: laplace

18.6. Non-conjugate prior distributions 341

Intermediate Quantitative Economics with Python

Density

30 +

2590 —

20+

10 ~

Posterior with n=25
Posterior with n= 10
Posterior with n= 50
Posterior with n= 100
Posterior with n= 1000
Prior distribution

0.0

0.2 0.4

0.6

0.8 1.0

Fig. 18.15: SVI density (Laplace prior, normal guide)

342

Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

—— Postenorwith n=5
10 4 —— Postenor with n= 10
—— Posternor with n= 50
—— Postenor with n= 100
g4 Postenior with n= 1000
Prior distribution
Fary
IE 6 -
g
4
2 -
dl LUHATTLAM
0 T I I T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.16: SVI density (uniform prior, Beta guide)

18.6. Non-conjugate prior distributions 343

Intermediate Quantitative Economics with Python

—— Posteriorwith n=75

10 4 —— Posterior with n= 10
—— Posterior with n= 50
—— Posterior with n= 100
g 4 —— Posterior with n= 1000
Prior distribution

z 6
8

4_

2_

0 r _.-"Z-ﬂ"/_./

I
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.17: SVI density (log normal prior, Beta guide)

344 Chapter 18. Non-Conjugate Priors

Intermediate Quantitative Economics with Python

—— Postenorwith n=5
—— Postenor with n= 10
107 —— posterior with n= 50
—— Postenor with n= 100
8 —— Postenor with n= 1000
Prior distribution
=
4 —
2 -
0 I I I T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.18: SVI density (von Mises prior, Beta guide)

18.6. Non-conjugate prior distributions 345

Intermediate Quantitative Economics with Python

12
—— Postenorwith n=5

—— Posterior with n= 10
10 1 —— Posteror with n= 50
—— Posterior with n= 100
—— Posterior with n= 1000
8 1 Prior distribution

Density

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18.19: SVI density (Laplace prior, Beta guide)

346 Chapter 18. Non-Conjugate Priors

CHAPTER
NINETEEN

POSTERIOR DISTRIBUTIONS FOR AR(1) PARAMETERS

O GprU

This lecture was built using a machine with the latest CUDA and CUDANN frameworks installed with access to a
GPU.

To run this lecture on Google Colab, click on the “play” icon top right, select Colab, and set the runtime environment
to include a GPU.

To run this lecture on your own machine, you need to install the software listed following this notice.

!'pip install numpyro jax

In addition to what’s included in base Anaconda, we need to install the following packages

'pip install arviz pymc

We'll begin with some Python imports.

import arviz as az

import pymc as pmc

import numpyro

from numpyro import distributions as dist

import numpy as np

import jax.numpy as jnp

from jax import random

import matplotlib.pyplot as plt

import logging
logging.basicConfig ()

logger = logging.getLogger ('pymc')
logger.setLevel (logging.CRITICAL)

This lecture uses Bayesian methods offered by pymc and numpyro to make statistical inferences about two parameters of
a univariate first-order autoregression.

The model is a good laboratory for illustrating consequences of alternative ways of modeling the distribution of the initial
Yo-
¢ As a fixed number

« As arandom variable drawn from the stationary distribution of the {y, } stochastic process

347

https://colab.research.google.com/
https://www.pymc.io/projects/docs/en/stable/
https://num.pyro.ai/en/stable/

Intermediate Quantitative Economics with Python

The first component of the statistical model is

yt+1 :pyt+gajet+1a t2 O (19])

where the scalars p and o, satisfy |p| < 1and o, > 0; {€,,, } is a sequence of i.i.d. normal random variables with mean
0 and variance 1.

The second component of the statistical model is
Yo ~ N(pg, 03) (19.2)

Consider a sample {y, } 7, governed by this statistical model.

The model implies that the likelihood function of {y,}Z ; can be factored:

FWryr—1s - 90) = Frlyr—) fYr—alyr—2) = fy1lyo) f(yo)
where we use f to denote a generic probability density.
The statistical model (19.1)-(19.2) implies

FWelye1) ~ N(py,_1,0%)
FWo) ~ N(po, 03)

We want to study how inferences about the unknown parameters (p, o,) depend on what is assumed about the parameters
hos O of the distribution of .

Below, we study two widely used alternative assumptions:

e (g, 09) = (yp,0) which means that ¥, is drawn from the distribution NV (y,, 0); in effect, we are conditioning
on an observed initial value.

* iy, 0 are functions of p, o, because y, is drawn from the stationary distribution implied by p, 0.
Note: We do not treat a third possible case in which 1, 0, are free parameters to be estimated.
Unknown parameters are p, 0.

We have independent prior probability distributions for p, o, and want to compute a posterior probability distribution
after observing a sample {y, }7_,.

The notebook uses pymc4 and numpyro to compute a posterior distribution of p, o,,. We will use NUTS samplers to
generate samples from the posterior in a chain. Both of these libraries support NUTS samplers.

NUTS is a form of Monte Carlo Markov Chain (MCMC) algorithm that bypasses random walk behaviour and allows
for convergence to a target distribution more quickly. This not only has the advantage of speed, but allows for complex
models to be fitted without having to employ specialised knowledge regarding the theory underlying those fitting methods.

Thus, we explore consequences of making these alternative assumptions about the distribution of y:

« A first procedure is to condition on whatever value of y, is observed. This amounts to assuming that the probability
distribution of the random variable y,, is a Dirac delta function that puts probability one on the observed value of

Yo-
A second procedure assumes that ¥, is drawn from the stationary distribution of a process described by (19.1) so
that y, ~ N (0, ui—m)

When the initial value y, is far out in a tail of the stationary distribution, conditioning on an initial value gives a posterior
that is more accurate in a sense that we’ll explain.

Basically, when y, happens to be in a tail of the stationary distribution and we don’t condition on y,), the likelihood
function for {y, }7_, adjusts the posterior distribution of the parameter pair p, o, to make the observed value of 3, more
likely than it really is under the stationary distribution, thereby adversely twisting the posterior in short samples.

348 Chapter 19. Posterior Distributions for AR(1) Parameters

Intermediate Quantitative Economics with Python

An example below shows how not conditioning on ¥, adversely shifts the posterior probability distribution of p toward
larger values.

We begin by solving a direct problem that simulates an AR(1) process.

How we select the initial value y,, matters.

2
o If we think y, is drawn from the stationary distribution NV (0, iﬁ) then it is a good idea to use this distribution
as f(y,). Why? Because y,, contains information about p, o,

« If we suspect that y,, is far in the tails of the stationary distribution — so that variation in early observations in the
sample have a significant transient component - it is better to condition on y, by setting f(y,) = 1.

To illustrate the issue, we’ll begin by choosing an initial y, that is far out in a tail of the stationary distribution.
def arl_simulate(rho, sigma, yO0, T):
Allocate space and draw epsilons
y = np.empty (T)

eps = np.random.normal (0.,sigma, T)

Initial condition and step forward

y[0] = yO
for t in range(l, T):
y[t] = rho*y[t-1] + eps[t]
return y
sigma = 1.
rho = 0.5
T = 50

np.random.seed (145353452)
y = arl_simulate (rho, sigma, 10, T)

plt.plot (y)
plt.tight_layout ()

349

Intermediate Quantitative Economics with Python

Now we shall use Bayes’ law to construct a posterior distribution, conditioning on the initial value of .

10 ~

0 10 20 30 40

(Later we’ll assume that y,, is drawn from the stationary distribution, but not now.)

First we’ll use pymc4.

19.1 PyMC Implementation

For a normal distribution in pymc, var = 1/7 = o*.

2

AR1_model = pmc.Model ()

with AR1_model:

Start with priors
rho = pmc.Uniform('rho', lower=-1., upper=1l.) # Assume stable rho
sigma = pmc.HalfNormal ('sigma', sigma = np.sqrt (10))

Expected value of y at the next period (rho * y)
yvhat = rho * y[:-1]

Likelihood of the actual realization
y_like = pmc.Normal ('y_obs', mu=yhat, sigma=sigma, observed=y[l:])

pmc.sample by default uses the NUTS samplers to generate samples as shown in the below cell:

50

350

Chapter 19. Posterior Distributions for AR(1) Parameters

https://www.pymc.io/projects/docs/en/v5.10.0/api/generated/pymc.sample.html#pymc-sample

Intermediate Quantitative Economics with Python

with AR1_model:
trace =

Output ()

with AR1_model:
az.plot_trace(trace,

pmc.sample (50000,

tune=10000,

figsize=(17,6))

return_inferencedata=True)

- 0.2
b

T T T T
10000 20000 30000 40000

0.6

rho

-

: T T T
0.2 0.3 0.4 0.5 0.6 0.7
sigma
=
- T T T T
0.6 0.8 10 12 1.4

T T T T
10000 20000 30000 40000

Evidently, the posteriors aren’t centered on the true values of .5, 1 that we used to generate the data.

This is a symptom of the classic Hurwicz bias for first order autoregressive processes (see Leonid Hurwicz [Hurwicz,

1950].)

The Hurwicz bias is worse the smaller is the sample (see [Orcutt and Winokur, 1969]).

Be that as it may, here is more information about the posterior.

with AR1_model:

summary = az.summary (trace,
summary

mean sd hdi_3%

rho 0.5363 0.0711 0.4021

sigma 1.0106 0.1065 0.8198
ess_tail r_hat
rho 124218.7509 1.0
sigma 136078.0796 1.0

round_to=4)

hdi_97% mcse_mean
0.6697 0.0002
1.2141 0.0003

mcse_sd ess_bulk \
0.0002 174466.8870
0.0003 168526.6453

Now we shall compute a posterior distribution after seeing the same data but instead assuming that y,, is drawn from the

stationary distribution.

This means that

‘We alter the code as follows:

19.1. PyMC Implementation

351

Intermediate Quantitative Economics with Python

AR1_model_y0 = pmc.Model ()
with AR1_model_yO0:
Start with priors
rho = pmc.Uniform('rho', lower=-1., upper=1.) # Assume stable rho

sigma = pmc.HalfNormal ('sigma', sigma=np.sqrt (10))

Standard deviation of ergodic y
y_sd = sigma / np.sqrt(l - rho**2)

yhat
vhat = rho * y[:-1]

y_data = pmc.Normal ('y_obs', mu=yhat, sigma=sigma, observed=y[l:])
y0_data = pmc.Normal ('y0_obs', mu=0., sigma=y_sd, observed=y[0])

with AR1_model_yO0:
trace_y0 = pmc.sample (50000, tune=10000, return_inferencedata=True)

Grey vertical lines are the cases of divergence

Output ()

with AR1_model_yO:
az.plot_trace(trace_y0, figsize=(17,6))

rho rho

0.4 4

1 AN W N 1|| L

0 10000 20000 30000 40000
sigma

with AR1_model:
summary_y0 = az.summary (trace_y0, round_to=4)

summary_y0

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \
rho 0.8761 0.0811 0.7327 0.9988 0.0002 0.0002 112310.4136
sigma 1.4040 0.1469 1.1363 1.6796 0.0005 0.0004 108620.1473
ess_tail r_hat

(continues on next page)

352 Chapter 19. Posterior Distributions for AR(1) Parameters

Intermediate Quantitative Economics with Python

(continued from previous page)

rho 85102.1781 1.0000
sigma 99996.8546 1.0001

Please note how the posterior for p has shifted to the right relative to when we conditioned on ¥, instead of assuming that
1o is drawn from the stationary distribution.

Think about why this happens.

© Hint

It is connected to how Bayes Law (conditional probability) solves an inverse problem by putting high probability on
parameter values that make observations more likely.

We'll return to this issue after we use numpyro to compute posteriors under our two alternative assumptions about the
distribution of y,.

We'll now repeat the calculations using numpyro.

19.2 Numpyro Implementation

def plot_posterior (sample) :

mmn

Plot trace and histogram

mmn

To np array

rhos = sample['rho']
sigmas = sample['sigma']
rhos, sigmas, = np.array(rhos), np.array(sigmas)

fig, axs = plt.subplots (2, 2, figsize=(17, 6))
Plot trace

axs[0, 0].plot (rhos) # rho

axs[1l, 0].plot(sigmas) # sigma

Plot posterior

axs [0, 1].hist(rhos, bins=50, density=True, alpha=0.7)
axs[0, 1].set_x1im ([0, 11])

axs[l, 1].hist(sigmas, bins=50, density=True, alpha=0.7)

axs[0, 0].set_title("rho")
axs[0, 1].set_title("rho")
axs[1l, 0].set_title("sigma")
axs[l, 1].set_title("sigma")
plt.show ()

def AR1_model (data) :
set prior
rho = numpyro.sample('rho', dist.Uniform(low=-1., high=1.))
sigma = numpyro.sample ('sigma', dist.HalfNormal (scale=np.sqrt (10)))

Expected value of y at the next period (rho * y)
vhat = rho * datal:-1]
(continues on next page)

19.2. Numpyro Implementation 353

Intermediate Quantitative Economics with Python

(continued from previous page)

Likelihood of the actual realization.
y_data = numpyro.sample('y_obs', dist.Normal (loc=yhat, scale=sigma), obs=data[l:])

Make jnp array
y = Jnp.array(y)

Set NUTS kernal
NUTS_kernel = numpyro.infer .NUTS (AR1_model)

Run MCMC

mcmc = numpyro.infer . MCMC (NUTS_kernel, num_samples=50000, num_warmup=10000, progress_
sbar=False)

mcmc . run (rng_key=random.PRNGKey (1), data=y)

W1124 03:43:56.062211 2868 cuda_executor.cc:1802] GPU interconnect information.
snot available: INTERNAL: NVML doesn't support extracting fabric info or NVLink.
<is not used by the device.

W1124 03:43:56.065442 2428 cuda_executor.cc:1802] GPU interconnect information.
snot available: INTERNAL: NVML doesn't support extracting fabric info or NVLink.
<is not used by the device.

plot_posterior (mcmc.get_samples())

rho

0.8

0.7 1

0.6

0.5+

0.4 1

0.3+

T T T T T
0 10000 20000 30000 40000 50000 0.0 0.2

sigma sigma
18

16+

144

121

1.0 4

0.8

T T T T T
o] 10000 20000 30000 40000 50000

1.4 16 1.8
mcmc . print_summary ()
mean std median 5.0% 95.0% n_eff r_hat
rho 0.54 0.07 0.54 0.42 0.65 44430.72 1.00
sigma 1.01 0.11 1.00 0.84 1.18 42626.35 1.00

Number of divergences: 0

Next, we again compute the posterior under the assumption that gy, is drawn from the stationary distribution, so that

02
Y, NN(O,—Q”)
0 1_p2

Here’s the new code to achieve this.

354 Chapter 19. Posterior Distributions for AR(1) Parameters

Intermediate Quantitative Economics with Python

def AR1_model_yO0 (data):
Set prior
rho = numpyro.sample('rho', dist.Uniform(low=-1., high=1.))
sigma = numpyro.sample ('sigma', dist.HalfNormal (scale=np.sqrt (10)))

Standard deviation of ergodic y
y_sd = sigma / Jjnp.sqgrt(l - rho**2)

Expected value of y at the next period (rho * y)
vhat = rho * datal:-1]

Likelihood of the actual realization.
y_data = numpyro.sample('y_obs', dist.Normal (loc=yhat, scale=sigma), obs=data[l:])
y0_data = numpyro.sample('y0_obs', dist.Normal (loc=0., scale=y_sd), obs=datal[0])

Make jnp array
y = jnp.array(y)

Set NUTS kernal
NUTS_kernel = numpyro.infer.NUTS (AR1_model_yO0)

Run MCMC
mcmc?2 = numpyro.infer MCMC (NUTS_kernel, num_samples=50000, num_warmup=10000, progress_

sbar=False)
mcmc2 . run (rng_key=random.PRNGKey (1), data=y)

plot_posterior (mcmc2.get_samples())

rho rho

1.0 4
0.9+
0.8
0.7 +

0.6 q

0.5

0.4 4

0 10000 20000 30000 40000 50000 0.0 0.2 04
sigma sigma

2.50

2.25 4 2.59

2.00 4 2.01

1.75 A 154

1.50 1.0

1.25
0.5+

1.00 4

0.0 -

T T T T T
0 10000 20000 30000 40000 50000 2.0 2.2 2.4

mcmc2 .print_summary ()

mean std median 5.0% 95.0% n_eff r_hat
rho 0.88 0.08 0.89 0.76 1.00 31419.08 1.00
sigma 1.41 0.15 1.39 1.17 1.64 26542.08 1.00

Number of divergences: 0

Look what happened to the posterior!

It has moved far from the true values of the parameters used to generate the data because of how Bayes’ Law (i.e.,
conditional probability) is telling numpyro to explain what it interprets as “explosive” observations early in the sample.

19.2. Numpyro Implementation 355

Intermediate Quantitative Economics with Python

Bayes’ Law is able to generate a plausible likelihood for the first observation by driving p — 1 and o 1 in order to raise
the variance of the stationary distribution.

Our example illustrates the importance of what you assume about the distribution of initial conditions.

356 Chapter 19. Posterior Distributions for AR(1) Parameters

CHAPTER
TWENTY

FORECASTING AN AR(1) PROCESS

'pip install arviz pymc
This lecture describes methods for forecasting statistics that are functions of future values of a univariate autogressive
process.
The methods are designed to take into account two possible sources of uncertainty about these statistics:
« random shocks that impinge of the transition law
« uncertainty about the parameter values of the AR(1) process
We consider two sorts of statistics:
* prospective values y, . ; of a random process {y,} that is governed by the AR(1) process
« sample path properties that are defined as non-linear functions of future values {y; ;} -, at time ¢
Sample path properties are things like “time to next turning point” or “time to next recession”.
To investigate sample path properties we'll use a simulation procedure recommended by Wecker [Wecker, 1979].

To acknowledge uncertainty about parameters, we'll deploy pymc to construct a Bayesian joint posterior distribution for
unknown parameters.

Let’s start with some imports.

import numpy as np

import arviz as az

import pymc as pmc

import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('white')
colors = sns.color_palette()

import logging
logging.basicConfig ()

logger = logging.getLogger ('pymc')
logger.setlLevel (logging.CRITICAL)

357

Intermediate Quantitative Economics with Python

20.1 A Univariate First-Order Autoregressive Process

Consider the univariate AR(1) model:
Ypp1 = PYy +0€4q, €20 (20.1)

where the scalars p and o satisfy |p| < 1and o > 0; {€,,, } is a sequence of i.i.d. normal random variables with mean 0
and variance 1.

The initial condition ¥y, is a known number.

Equation (20.1) implies that for ¢ > 0, the conditional density of ¥, is

f(ytJrl |yta P, 0) ~ N(pyt7 02) (202)

Further, equation (20.1) also implies that for ¢ > 0, the conditional density of y, +j forj>1is

_ 1— 2
F@eijlyes p,0) ~ N | ply;, 0 p2 (20.3)
L=p

The predictive distribution (20.3) that assumes that the parameters p, o are known, which we express by conditioning on
them.

We also want to compute a predictive distribution that does not condition on p, o but instead takes account of our uncer-
tainty about them.

We form this predictive distribution by integrating (20.3) with respect to a joint posterior distribution 7,(p, o|y*) that
conditions on an observed history y* = {y,}!_:

Fueilyt) = /f(yt+j|yt; p, o) (p, oly’)dpdo (20.4)

Predictive distribution (20.3) assumes that parameters (p, o) are known.
Predictive distribution (20.4) assumes that parameters (p, o) are uncertain, but have known probability distribution
m(p,oly’).
We also want to compute some predictive distributions of “sample path statistics” that might include, for example
« the time until the next “recession”,
« the minimum value of Y over the next 8 periods,
« “severe recession”, and
« the time until the next turning point (positive or negative).

To accomplish that for situations in which we are uncertain about parameter values, we shall extend Wecker'’s [Wecker,
1979] approach in the following way.

« first simulate an initial path of length T});

« for a given prior, draw a sample of size N from the posterior joint distribution of parameters (p, o) after observing
the initial path;

o for each draw n = 0,1, ..., NV, simulate a “future path” of length T, with parameters (p,,, 0,,) and compute our
three “sample path statistics”;

« finally, plot the desired statistics from the N samples as an empirical distribution.

358 Chapter 20. Forecasting an AR(1) Process

Intermediate Quantitative Economics with Python

20.2 Implementation

First, we'll simulate a sample path from which to launch our forecasts.

In addition to plotting the sample path, under the assumption that the true parameter values are known, we’ll plot .9 and
.95 coverage intervals using conditional distribution (20.3) described above.

We'll also plot a bunch of samples of sequences of future values and watch where they fall relative to the coverage interval.

def

def

AR1_simulate (rho, sigma, y0, T):
Allocate space and draw epsilons
y = np.empty (T)

eps = np.random.normal (0, sigma, T)

Initial condition and step forward

y[0] = yO0
for t in range(l, T):

y[t] = rho * y[t-1] + eps[t]
return y

plot_initial_path(initial_path):

mmn

Plot the initial path and the preceding predictive densities

mrn

Compute .9 confidence intervall]

y0 = initial path[-1]

center = np.array([rho**3j * y0 for j in range(T1l)])

vars = np.array([sigma**2 * (1 - rho**(2 * j)) / (1 - rho**2) for j in range(T1)])
y_boundsl_c95, y_bounds2_c95 = center + 1.96 * np.sqgrt(vars), center — 1.96 * np.

-sgrt (vars)

y_boundsl_c90, y_bounds2_c90 = center + 1.65 * np.sqgrt(vars), center - 1.65 * np.

wsqrt (vars)

Plot

fig, ax = plt.subplots(l, 1, figsize=(12, 6))
ax.set_title("Initial Path and Predictive Densities", fontsize=15)
ax.plot (np.arange (-TO0 + 1, 1), initial_path)

ax.set_x1im([-TO, T1])

ax.axvline (0, linestyle='—--', alpha=.4, color='k', lw=1l)

Simulate future paths
for i in range (10):
y_future = AR1_simulate(rho, sigma, yO0, T1)
ax.plot (np.arange (T1l), y_future, color='grey', alpha=.5)

Plot 90% CI
ax.fill _between (np.arange(T1l), y_boundsl_c95, y_bounds2_c95, alpha=.3, label='95%._

<CI')

o
S

ax.fill_between (np.arange (T1l), y_boundsl_c90, y_bounds2_c90, alpha=.35, label='90
CI'")

ax.plot (np.arange(Tl), center, color='red', alpha=.7, label='expected mean')
ax.legend (fontsize=12)

plt.show ()

(continues on next page)

20.2.

Implementation 359

Intermediate Quantitative Economics with Python

(continued from previous page)

sigma = 1

rho = 0.9

TO, T1 = 100, 100
y0O = 10

Simulate
np.random.seed (145)
initial_path = AR1_simulate(rho, sigma, y0, TO)

Plot
plot_initial path(initial_path)

Initial Path and Predictive Densities

10 | 95% ClI
| 90% ClI
3 1 —— expected mean

UI |
! “bJ‘L I'?"* \a"\\& Im‘#' ‘Mh’
& "W“NWWWww ﬂ“‘ g

0 'n
I
—4 }

—6

—=100 -75 —50 —25 0 25 50 75 100

As functions of forecast horizon, the coverage intervals have shapes like those described in https://python.quantecon.org/
perm_income_cons.html

20.3 Predictive Distributions of Path Properties

Wecker [Wecker, 1979] proposed using simulation techniques to characterize predictive distribution of some statistics
that are non-linear functions of y.

He called these functions “path properties” to contrast them with properties of single data points.
He studied two special prospective path properties of a given series {y, }.
The first was time until the next turning point.

« he defined a “turning point” to be the date of the second of two successive declines in y.

To examine this statistic, let Z be an indicator process

1 if Yy (w) <Y (w) <Y 5(w) 2 Y, 5(w)
0 otherwise

aww»={

360 Chapter 20. Forecasting an AR(1) Process

https://python.quantecon.org/perm_income_cons.html
https://python.quantecon.org/perm_income_cons.html

Intermediate Quantitative Economics with Python

Then the random variable time until the next turning point is defined as the following stopping time with respect to
Z:

Wi(w) :=inf{k > 1| Z, ;(w) =1}

Wecker [Wecker, 1979] also studied the minimum value of Y over the next 8 quarters which can be defined as the
random variable.

M, (w) :== min{Y; 4 (w); Vi o(w); .. ; Vipg(w)}

It is interesting to study yet another possible concept of a turning point.

Thus, let

1 ifY, h(w) > Y, 4 (w) > Y(w)and Yy(w) <Y (w) <Yip(w)
T(Y (@) =4 —1 i Y, 5(w) < ¥, (®) < Y;(w) and V(@) > Y,y (@) > Vy.n(w)
0 otherwise

Define a positive turning point today or tomorrow statistic as

P(w) 1 fT(w)=1lorT,;(w)=1
w) =
¢ 0 otherwise

This is designed to express the event
« “after one or two decrease(s), Y will grow for two consecutive quarters”

Following [Wecker, 1979], we can use simulations to calculate probabilities of P, and NV, for each period ¢.

20.4 A Wecker-Like Algorithm

The procedure consists of the following steps:
« index a sample path by w;

« for a given date ¢, simulate I sample paths of length N

Y (w;) = (Y1 (0,), Yo (@i), oo, Yo n ()}

« for each path w;, compute the associated value of W, (w;), W,,;(w;), ...

o consider the sets {W, (w;)}7_1, {W, 1 (w;)}y, ..., {Win(w;)}L, as samples from the predictive distributions
SWea 1y) FWeio [Y91y)y oos Wi [W5 Yimas -0)

20.5 Using Simulations to Approximate a Posterior Distribution

The next code cells use pymc to compute the time ¢ posterior distribution of p, 0.

Note that in defining the likelihood function, we choose to condition on the initial value .

20.4. A Wecker-Like Algorithm 361

Intermediate Quantitative Economics with Python

def draw_from posterior (sample) :

mmn

Draw a sample of size N from the posterior distribution.

mmn

AR1_model = pmc.Model ()
with AR1_model:
Start with priors
rho = pmc.Uniform('rho',lower=-1.,upper=1.) # Assume stable rho

sigma = pmc.HalfNormal ('sigma', sigma = np.sqgrt (10))

Expected value of y at the next period (rho * y)
vhat = rho * sample[:-1]

Likelihood of the actual realization.
y_like = pmc.Normal ('y_obs', mu=yhat, sigma=sigma, observed=sample[l:])

with AR1_model:
trace = pmc.sample (10000, tune=5000)

check condition
with AR1_model:

az.plot_trace(trace, figsize=(17, 6))

rhos = trace.posterior.rho.values.flatten()
sigmas = trace.posterior.sigma.values.flatten ()

post_sample = {
'rho': rhos,
'sigma': sigmas

return post_sample

post_samples = draw_from posterior(initial_path)

Output ()

362 Chapter 20. Forecasting an AR(1) Process

Intermediate Quantitative Economics with Python

rho

5 0.90 0.95 1.00 0 2000 4000 6000 8000
sigma sigma

0.75 0.80 0.8

"M
0.8 0.9 10 11 12 13 14 15

The graphs on the left portray posterior marginal distributions.

20.6 Calculating Sample Path Statistics

Our next step is to prepare Python code to compute our sample path statistics.

define statistics
def next_recession (omega) :
n = omega.shape[0] - 3
z = np.zeros(n, dtype=int)

for i in range(n):
z[1] = int (omega[i] <= omegal[i+l] and omega[i+l] > omega[it+2] and omega[i+2] >
~ omegal[i+3])

if np.any(z) == False:
return 500
else:
return np.where (z==1) [0] [0] + 1

def minimum_value (omega) :
return min (omegal[:8])

def severe_recession (omega) :
Z np.diff (omega)
n z .shape[0]

sr = (z < —-.02) .astype (int)

indices = np.where(sr == 1) [0]
if len(indices) == 0:

return T1
else:

return indices[0] + 1
def next_turning_point (omega) :
mirrmn

Suppose that omega is of length 6

(continues on next page)

20.6. Calculating Sample Path Statistics 363

Intermediate Quantitative Economics with Python

(continued from previous page)
y_{t=2}, y_{t-1}, y_{t}, y_{t+l}, y_{t+2}, y_{t+3}

that is sufficient for determining the value of P/N

mmn

n = np.asarray (omega) .shape[0] - 4
T = np.zeros(n, dtype=int)

for i in range(n):

if ((omegal[i] > omegal[it+l]) and (omega[i+l] > omega[i+2]) and
(omega[i+2] < omega[i+3]) and (omega[i+3] < omega[i+4])):
T[i] = 1
elif ((omega[i] < omega[i+l]) and (omega[i+l] < omegal[i+2]) and
(omega[i+2] > omega[i+3]) and (omega[i+3] > omega[i+4])):
T[i] = -1
up_turn = np.where(T == 1) [0][0] + 1 if (1 in T) == True else T1
down_turn = np.where(T == -1)[0][0] + 1 if (-1 in T) == True else T1

return up_turn, down_turn

20.7 Original Wecker Method

Now we apply Wecker’s original method by simulating future paths and compute predictive distributions, conditioning
on the true parameters associated with the data-generating model.

def plot_Wecker (initial_ path, N, ax):

mmn

Plot the predictive distributions from "pure" Wecker's method.
wn

Store outcomes

next_reces = np.zeros (N)

severe_rec = np.zeros (N)

min_vals = np.zeros (N)

next_up_turn, next_down_turn = np.zeros(N), np.zeros (N)

Compute .9 confidence intervall]

y0 = initial_path[-1]

center = np.array([rho**j * y0 for j in range(T1)])

vars = np.array([sigma**2 * (1 - rho**(2 * 3J)) / (1 - rho**2) for j in range(T1)])

y_boundsl_c95, y_bounds2_c95 = center + 1.96 * np.sqrt(vars), center - 1.96 * np.
-sgrt (vars)

y_boundsl_c90, y_bounds2_c90 = center + 1.65 * np.sgrt(vars), center — 1.65 * np.
wsqrt (vars)

Plot

ax[0, 0].set_title("Initial path and predictive densities", fontsize=15)
ax[0, O0].plot(np.arange(-TO0O + 1, 1), initial_path)

ax[0, 0].set_x1im([-TO, T11)

ax[0, 0].axvline (0, linestyle='—-', alpha=.4, color='k', lw=1)

Plot 90% CI

ax[0, 0].fill_between (np.arange(T1l), y_boundsl_c95, y_bounds2_c95, alpha=.3)

ax[0, 0].fill _between (np.arange(T1l), y_boundsl_c90, y_bounds2_c90, alpha=.35)
(continues on next page)

364 Chapter 20. Forecasting an AR(1) Process

Intermediate Quantitative Economics with Python

(continued from previous page)

ax[0, 0].plot(np.arange(T1l), center, color='red', alpha=.7)

Simulate future paths
for n in range (N) :
sim_path = AR1_simulate(rho, sigma, initial_path[-1], T1)

next_reces[n] = next_recession(np.hstack([initial path[-3:-1], sim_path]))
severe_rec|[n] = severe_recession(sim_path)

min_vals[n] = minimum_ value (sim_path)

next_up_turn[n], next_down_turn[n] = next_turning point (sim_path)

if n%(N/10) == O:

ax[0, 0].plot(np.arange(Tl), sim_path, color='gray', alpha=.3, lw=1)

Return next_up_turn, next_down_turn

sns.histplot (next_reces, kde=True, stat='density', ax=ax[0, 1], alpha=.8, label=
<'True parameters')

ax[0, 1].set_title("Predictive distribution of time until the next recession", .
~fontsize=13)

sns.histplot (severe_rec, kde=False, stat='density', ax=ax[1l, 0], binwidth=0.9, .
walpha=.7, label='True parameters')

ax[1l, 0].set_title(r"Predictive distribution of stopping time of growth$<-2\%s$", .
~fontsize=13)

sns.histplot (min_vals, kde=True, stat='density', ax=ax[1l, 1], alpha=.8, label=
-'True parameters')

ax[1l, 1].set_title("Predictive distribution of minimum value in the next 8 periods
<", fontsize=13)

sns.histplot (next_up_turn, kde=True, stat='density',6 ax=ax[2, 0], alpha=.8, label=
»'True parameters')

ax[2, 0].set_title("Predictive distribution of time until the next positive turn",
- fontsize=13)

sns.histplot (next_down_turn, kde=True, stat='density', ax=ax[2, 1], alpha=.8,._
<label="'True parameters')

ax[2, 1l].set_title("Predictive distribution of time until the next negative turn",
« fontsize=13)

fig, ax = plt.subplots (3, 2, figsize=(15,12))
plot_Wecker (initial_path, 1000, ax)
plt.show ()

20.7. Original Wecker Method 365

Intermediate Quantitative Economics with Python

Initial path and predictive densities Predictive distribution of time until the next recession
10.0]
-7.5 !
-100 -75 -50 -25 0 25 50 75 100 5 10 15 20 25 30 35
Predictive distribution of stopping time of growth < —-2% Predictive distribution of minimum value in the next 8 periods
10
0.8
206
@
o
8
0.4
0.2
0.0
1 2 3 4 5 6 7 8 9 -7 -6 -5 —4 -3 -2
Predictive distribution of time until the next positive turn Predictive distribution of time until the next negative turn
0.08
0.07
0.06
z 2z 005
é é 0.04
0.03
0.02
0.01
0.00
60 80 0 20 40 60 80 100

20.8 Extended Wecker Method

Now we apply we apply our “extended” Wecker method based on predictive densities of y defined by (20.4) that ac-
knowledge posterior uncertainty in the parameters p, o.

To approximate the intergration on the right side of (20.4), we repeatedly draw parameters from the joint posterior
distribution each time we simulate a sequence of future values from model (20.1).

def plot_extended_Wecker (post_samples, initial_path, N, ax):

mmn

Plot the extended Wecker's predictive distribution

wn

Select a sample

index = np.random.choice (np.arange (len (post_samples|['rho'])), N + 1,.
sreplace=False)

rho_sample = post_samples|['rho'] [index]

sigma_sample = post_samples|['sigma'] [index]

Store outcomes

next_reces = np.zeros (N)
severe_rec = np.zeros (N)
min_vals = np.zeros (N)

next_up_turn, next_down_turn = np.zeros(N), np.zeros (N)
(continues on next page)

366 Chapter 20. Forecasting an AR(1) Process

Intermediate Quantitative Economics with Python

(continued from previous page)

Plot

ax[0, 0].set_title("Initial path and future paths simulated from posterior draws",
- fontsize=15)

ax[0, 0].plot(np.arange(-TO0 + 1, 1), initial_path)

ax[0, 0].set_x1im([-TO, T11)

ax[0, 0].axvline (0, linestyle='—-', alpha=.4, color='k', lw=1)

Simulate future paths
for n in range (N) :
sim_path = AR1_simulate (rho_sample[n], sigma_sample([n], initial_ path[-1], T1)

next_reces[n] = next_recession(np.hstack([initial path[-3:-1], sim_path]))
severe_rec|[n] = severe_recession (sim_path)

min_vals[n] = minimum_ value (sim_path)

next_up_turn([n], next_down_turn[n] = next_turning_point (sim_path)

ifn % (N / 10) ==
ax[0, 0].plot(np.arange(T1l), sim_path, color='gray', alpha=.3, lw=1)

Return next_up_turn, next_down_turn

sns.histplot (next_reces, kde=True, stat='density', ax=ax[0, 1], alpha=.6,.
scolor=colors[1l], label='Sampling from posterior')

ax[0, 1].set_title("Predictive distribution of time until the next recession", .
~fontsize=13)

sns.histplot (severe_rec, kde=False, stat='density', ax=ax[l, 0], binwidth=.9, .
salpha=.6, color=colors[l], label='Sampling from posterior')

ax[1l, 0].set_title(r"Predictive distribution of stopping time of growth$<-2\%s$", .
~fontsize=13)

sns.histplot (min_vals, kde=True, stat='density', ax=ax[l, 1], alpha=.6,.
scolor=colors([l], label='Sampling from posterior')

ax[1l, 1].set_title("Predictive distribution of minimum value in the next 8 periods
<", fontsize=13)

sns.histplot (next_up_turn, kde=True, stat='density',6K ax=ax[2, 0], alpha=.6,.
scolor=colors[1l], label='Sampling from posterior')

ax[2, 0].set_title("Predictive distribution of time until the next positive turn",
« fontsize=13)

sns.histplot (next_down_turn, kde=True, stat='density', ax=ax[2, 1], alpha=.6,_
scolor=colors([1l], label='Sampling from posterior')

ax[2, 1l].set_title("Predictive distribution of time until the next negative turn",
< fontsize=13)

fig, ax = plt.subplots(3, 2, figsize=(15, 12))
plot_extended_Wecker (post_samples, initial_path, 1000, ax)
plt.show ()

20.8. Extended Wecker Method 367

Intermediate Quantitative Economics with Python

Initial path and future paths simulated from posterior draws Predictive distribution of time until the next recession
10
0.200
0.175
5
0.150
20125
0 B
gawo
s 0.075
0.050
_10 0.025
0.000
-100 -75 -50 -25 0 25 50 75 100 5 10 15 20 25
Predictive distribution of stopping time of growth < —-2% Predictive distribution of minimum value in the next 8 periods
05 1.0
0.4 0.8
203 206
5 5
202 S04
0.1 0.2
0.0 0.0
2 4 6 8 10 -10 -8 -6 -4 -2
Predictive distribution of time until the next positive turn Predictive distribution of time until the next negative turn
0.08
0.08
0.07
0.06
0.06
2 2 0.05
2 2
& 0.04 § ooa
0.03
0.02 0.02
0.01
0.00 0.00
0 20 a0 60 80 0 20 40 60 80

20.9 Comparison

Finally, we plot both the original Wecker method and the extended method with parameter values drawn from the pos-
terior together to compare the differences that emerge from pretending to know parameter values when they are actually
uncertain.

fig, ax = plt.subplots (3, 2, figsize=(15,12))

plot_Wecker (initial_path, 1000, ax)

ax[0, 0].clear()

plot_extended_Wecker (post_samples, initial_path, 1000, ax)
plt.legend()

plt.show ()

368 Chapter 20. Forecasting an AR(1) Process

Intermediate Quantitative Economics with Python

Initial path and future paths simulated from posterior draws Predictive distribution of time until the next recession
10.0 i 0.25
7.5 i
i 0.20
5.0 E
2.5 : b/l Z 015
0.0 i I ",I | il I"71 |
: ":'f‘ WIS i AN & e
-25 L AN \ 1
_5.0 , 0.05
-75 '
- 0.00
-100 -75 -50 -25 0 25 50 75 100 20 25 30
Predictive distribution of stopping time of growth < —-2% Predictive distribution of minimum value in the next 8 periods
— u
10
0.8
=
‘G 06
8
0.4
0.2
0.0
1 2 3 4 5 6 7 8 9 -10 -8 -6 -4 -2
Predictive distribution of time until the next positive turn Predictive distribution of time until the next negative turn

B mmm True parameters

0.08 Sampling from posterior

0.06

Density
Density

0.02

0.00

60 80 50 60 70

20.9. Comparison 369

Intermediate Quantitative Economics with Python

370 Chapter 20. Forecasting an AR(1) Process

Part IV

Statistics and Information

371

CHAPTER
TWENTYONE

STATISTICAL DIVERGENCE MEASURES

Contents

o Statistical Divergence Measures
— Overview
— Primer on entropy, cross-entropy, KL divergence
— Two Beta distributions: running example
— Kullback-Leibler divergence
- Jensen-Shannon divergence
— Chernoff entropy
— Comparing divergence measures

— KL divergence and maximum-likelihood estimation

— Related lectures

21.1 Overview

A statistical divergence quantifies discrepancies between two distinct probability distributions that can be challenging to
distinguish for the following reason:

« every event that has positive probability under one of the distributions also has positive probability under the other
distribution

« this means that there is no “smoking gun” event whose occurrence tells a statistician that one of the probability
distributions surely governs the data

A statistical divergence is a function that maps two probability distributions into a nonnegative real number.

Statistical divergence functions play important roles in statistics, information theory, and what many people now call
“machine learning”.

This lecture describes three divergence measures:
« Kullback-Leibler (KL) divergence
¢ Jensen—-Shannon (JS) divergence

o Chernoff entropy

373

Intermediate Quantitative Economics with Python

These will appear in several quantecon lectures.

Let’s start by importing the necessary Python tools.

import matplotlib.pyplot as plt

import numpy as np

from numba import vectorize, jit

from math import gamma

from scipy.integrate import quad

from scipy.optimize import minimize_scalar
import pandas as pd

from IPython.display import display, Math

21.2 Primer on entropy, cross-entropy, KL divergence

Before diving in, we’ll introduce some useful concepts in a simple setting.

We'll temporarily assume that f and g are two probability mass functions for discrete random variables on state space
I'={1,2,..,n} thatsatisfy f; > 0,> . f, = 1,9, > 0,> . g, = 1.

We follow some statisticians and information theorists who define the surprise or surprisal associated with having
observed a single draw = = ¢ from distribution f as
1
log ()
fi

They then define the information that you can anticipate to gather from observing a single realization as the expected
surprisal

Mﬂ;ﬁm(p.

Claude Shannon [Shannon, 1948] called H (f) the entropy of distribution f.

© Note

By maximizing H (f) with respect to {f}, f5, ..., f,, } subject to » . f; = 1, we can verify that the distribution that
maximizes entropy is the uniform distribution f; = % Entropy H (f) for the uniform distribution evidently equals

—log(n).

Kullback and Leibler [Kullback and Leibler, 1951] define the amount of information that a single draw of x provides for
distinguishing f from g as the log likelihood ratio

[(z)
tog g9(z)

The following two concepts are widely used to compare two distributions f and g.

Cross-Entropy:

H(f,9)==3_ filogg, @L.1)
Kullback-Leibler (KL) Divergence:
Dgr(fllg) = Zfi log [Z}} (21.2)

7

374 Chapter 21. Statistical Divergence Measures

Intermediate Quantitative Economics with Python

These concepts are related by the following equality.

Dy (f 1l 9) = H(f,9)— H(f) (21.3)
To prove (21.3), note that
Dicr(f Il 9) = Z filog m (21.4)
= _ fillog f, —logg;] (21.5)
= ifi logf,—) f;logy, (21.6)
—H() + () (21.7)
=H(f,g)—H(f) (21.8)

Remember that H (f) is the anticipated surprisal from drawing x from f.

Then the above equation tells us that the KL divergence is an anticipated “excess surprise” that comes from anticipating
that = is drawn from f when it is actually drawn from g.

21.3 Two Beta distributions: running example

We'll use Beta distributions extensively to illustrate concepts.

The Beta distribution is particularly convenient as it’s defined on [0, 1] and exhibits diverse shapes by appropriately choos-
ing its two parameters.

The density of a Beta distribution with parameters a and b is given by

I'(a+b)z¢ (1 — z)b’1

fEaD = =)

where T'(p) ::/ P e dx
0

We introduce two Beta distributions f(x) and g(x), which we will use to illustrate the different divergence measures.

Let’s define parameters and density functions in Python

Parameters in the two Beta distributions
F_a, F_. b =1, 1
G_a, G_b =3, 1.2

@vectorize

def p(x, a, b):
r = gamma (a + b) / (gamma(a) * gamma (b))
return r * x** (a-1) * (1 - x) ** (b-1)

The two density functions
= jit (lambda x: p(x, F_a, F_b))
= jit (lambda x: p(x, G_a, G_b))

Q th

Plot the distributions

X_range = np.linspace(0.001, 0.999, 1000)
f_vals = [f(x) for x in x_range]

g_vals = [g(x) for x in x_range]

plt.figure(figsize=(10, 6))
(continues on next page)

21.3. Two Beta distributions: running example 375

Intermediate Quantitative Economics with Python

(continued from previous page)

plt.plot (x_range, f_vals, 'b-', linewidth=2, label=r'sS$f(x) \sim \text (1,1)s")
plt.plot (x_range, g_vals, 'r-', linewidth=2, label=r'sSg(x) \sim \text (3,1.2)s$")

Fill overlap region
overlap = np.minimum(f_vals, g_vals)
plt.fill_between (x_range, 0, overlap, alpha=0.3, color='purple', label='overlap')

plt.xlabel ('x")
plt.ylabel ('density')
plt.legend()

plt.show ()

— fix) ~Beta(l, 1)
—— g(x) ~Beta(3,1.2)
overlap

2.0 1

L5~

density

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

21.4 Kullback-Leibler divergence

Our first divergence function is the Kullback-Leibler (KL) divergence.

For probability densities (or pmfs) f and g it is defined by

Dyer(fl) = KL(f.9) = [f(wtog ; Eg d.

We can interpret D, (f|g) as the expected excess log loss (expected excess surprisal) incurred when we use g while the
data are generated by f.

It has several important properties:
« Non-negativity (Gibbs’ inequality): Dy (f|lg) > 0 with equality if and only if f = g almost everywhere.

o Asymmetry: Dy, (flg) # Dy (gllf) in general (hence it is not a metric)

376 Chapter 21. Statistical Divergence Measures

Intermediate Quantitative Economics with Python

o Information decomposition: Dy (fllg) = H(f,9) — H(f), where H(f, g) is the cross entropy and H (f) is the
Shannon entropy of f.

o Chain rule: For joint distributions f(x,y) and g(x,y), D (f(z,y)lg9(z,y)) = Dgp(f(@)|g(z)) +
Ep [Dicr (f(ylz)lg(ylz))]

KL divergence plays a central role in statistical inference, including model selection and hypothesis testing.

Likelihood Ratio Processes describes a link between KL divergence and the expected log likelihood ratio, and the lecture
A Problem that Stumped Milton Friedman connects it to the test performance of the sequential probability ratio test.

Let’s compute the KL divergence between our example distributions f and g.

def compute_KL(f, g):

mmn

Compute KL divergence KL(f, g) via numerical integration

mmn

def integrand (w) :

fw = £(w)
gw = g(w)
return fw * np.log(fw / gw)
val, _ = quad(integrand, le-5, 1-1e-5)

return val

Compute KL divergences between our example distributions
k1l _fg = compute_KL(f, g)
kl_gf = compute_KL(g, f)

print (f"KL(f, g) = {kl_fg:.4f}")
print (£"KL (g, f) kl _gf:.4f}")

KL(f, g) = 0.7590
KL(g, f) = 0.3436

The asymmetry of KL divergence has important practical implications.

D1 (flg) penalizes regions where f > 0 but g is close to zero, reflecting the cost of using ¢ to model f and vice versa.

21.5 Jensen-Shannon divergence

Sometimes we want a symmetric measure of divergence that captures the difference between two distributions without
favoring one over the other.

This often arises in applications like clustering, where we want to compare distributions without assuming one is the true
model.

The Jensen-Shannon (JS) divergence symmetrizes KL divergence by comparing both distributions to their mixture:

1 1 1
JS(f,9) = §DKL<f”m) + §DKL(9Hm)7 m = §(f +9).
where m is a mixture distribution that averages f and g
Let’s also visualize the mixture distribution m:

def m(x) :
return 0.5 * (f(x) + g(x))

(continues on next page)

21.5. Jensen-Shannon divergence 377

Intermediate Quantitative Economics with Python

(continued from previous page)

m_vals = [m(x) for x in x_range]

plt.figure(figsize= (10, 6))

plt.plot (x_range, f_vals, 'b-', linewidth=2, label=r'S$f(x)S$")

plt.plot (x_range, g_vals, 'r-', linewidth=2, label=r's$g(x)S$")
'g--'", linewidth=2, label=r'Sm(x) =

v

plt.plot (x_range, m_vals, \frac (f(x) + g(x))

'S ')

plt.xlabel ('x")
plt.ylabel ('density"')
plt.legend()
plt.show ()

—_ flx)

20{ — 9W

== mix)=3z(flx) +g(x))

1.5~

density

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

The JS divergence has several useful properties:
o Symmetry: JS(f,g) = JS(g, f).
« Boundedness: 0 < JS(f,g) <log2.
« Its square root v/J S is a metric (Jensen—Shannon distance) on the space of probability distributions.

« JS divergence equals the mutual information between a binary random variable Z ~ Bernoulli(1/2) indicating the
source and a sample X drawn from f if Z = 0 or from g if Z = 1.

The Jensen-Shannon divergence plays a key role in the optimization of certain generative models, as it is bounded,
symmetric, and smoother than KL divergence, often providing more stable gradients for training.

Let’s compute the JS divergence between our example distributions f and g

def compute_JS(f, g):
"""Compute Jensen-Shannon divergence.'""
def m(w) :

return 0.5 * (£(w) + g(w))
(continues on next page)

378 Chapter 21. Statistical Divergence Measures

Intermediate Quantitative Economics with Python

(continued from previous page)

js_div = 0.5 * compute_KL(f, m) + 0.5 * compute_KL (g, m)
return js_div

js_div = compute_JS(f, g)
print (f"Jensen-Shannon divergence JS(f,qg) = {js_div:.4f}")

Jensen—-Shannon divergence JS(f,g) = 0.0984

We can easily generalize to more than two distributions using the generalized Jensen-Shannon divergence with weights
o= ()i

TS (fryes fr) = H (Z afi | =D aH(f,)
=1 =1

where:
o a; > 0and 2?21 a; =1, and

« H(f)=— [f(z)log f(z)dz is the Shannon entropy of distribution f

21.6 Chernoff entropy

Chernoff entropy originates from early applications of the theory of large deviations, which refines central limit approx-
imations by providing exponential decay rates for rare events.

For densities f and g the Chernoff entropy is

C(f.9) = ~tog min [*(a)g"(z) da.

Remarks:
« The inner integral is the Chernoff coefficient.
« At ¢ = 1/2 it becomes the Bhattacharyya coefficient [\/fg.
« In binary hypothesis testing with 7" iid observations, the optimal error probability decays as e~ (/9T

We will see an example of the third point in the lecture Likelihood Ratio Processes, where we study the Chernoff entropy
in the context of model selection.

Let’s compute the Chernoff entropy between our example distributions f and g.

def chernoff_ integrand(éd, £, g):
"""Integral entering Chernoff entropy for a given ¢."""
def integrand(w) :
return f(w)**d * g(w)**(1-0¢)
result, _ = quad(integrand, le-5, 1-1e-5)
return result

def compute_chernoff entropy(f, g):
"""Compute Chernoff entropy C(f,g)."""
def objective (¢) :
return chernoff integrand(¢, £, g)
result = minimize_scalar (objective, bounds=(le-5, 1-1le-5), method='bounded')
min_value = result.fun
(continues on next page)

21.6. Chernoff entropy 379

https://en.wikipedia.org/wiki/Large_deviations_theory

Intermediate Quantitative Economics with Python

¢_optimal

C_fg, ¢_optimal

print (f"Chernoff entropy C(f,q)
print (f"Optimal ¢ =

Chernoff entropy
Optimal ¢ =

result.x
chernoff_entropy
return chernoff_entropy,

d_optimal

compute_chernoff_entropy (£,

C_fg

¢_optimal:.4f}")

C(f,g) = 0.1212

0.5969

-np.log(min_value)

JAEFT)

(continued from previous page)

9)

21.7 Comparing divergence measures

We now compare these measures across several pairs of Beta distributions

Pair (f, g) KL(f, g) KL(g,f) IS C

Beta(1,1),Beta(1.1,1.05) 0.0028 0.0026 0.0007 0.0007
Beta(1,1),Beta(1.2,1.1) 0.0105 0.0092 0.0024 0.0025
Beta(1, 1), Beta(0.9,0.8) 0.0143 0.0166 0.0038 0.0039
Beta(1, 1), Beta(1.5,1.2) 0.0589 0.0437 0.0121 0.0126
Beta(1, 1), Beta(0.7,0.6) 0.0673 0.0924 0.0186 0.0201
Beta(1, 1), Beta(2,1.5) 0.1781 0.1081 0.0309 0.0339
Beta(1,1), Beta(0.5,0.5) 0.1448 0.2190 0.0400 0.0461
Beta(1, 1), Beta(2.5,1.8) 0.3323 0.1731 0.0502 0.0577
Beta(1, 1), Beta(0.3,0.4) 0.3317 0.5572 0.0869 0.1203
Beta(1, 1), Beta(3,1.2) 0.7590 0.3436 0.0984 0.1212
Beta(1, 1), Beta(0.3,0.3) 0.3935 0.6516 0.1008 0.1456
Beta(1,1),Beta(4,1) 1.6134 0.6362 0.1733 0.2341
Beta(1,1), Beta(0.1,0.2) 0.9811 1.0036 0.1783 0.4556
Beta(1, 1), Beta(5,) 2.3901 0.8094 0.2162 0.3128

We can clearly see co-movement across the divergence measures as we vary the parameters of the Beta distributions.

Next we visualize relationships among KL, JS, and Chernoff entropy.

k1l _fg_values
Jjs_values

[float (result ['KL
[float (result["

(fl

Js'l)

g)'l)

for result in results]
for result in results]

chernoff_values = [float (result['C']) for result in results]

fig, axes = plt.subplots(l, 2, figsize=(12, 5))

axes|[0] .scatter (k1l_fg_values, Jjs_values, alpha=0.7, s=60)

axes[0] .set_xlabel ('KL divergence KL(f, g)'")

axes[0] .set_ylabel ('JS divergence')

axes[0] .set_title('JS divergence vs KL divergence')

axes|[1l] .scatter (js_values, chernoff_values, alpha=0.7, s=60)

axes[1l] .set_xlabel ('JS divergence')

axes[1l] .set_ylabel ('Chernoff entropy')

axes([1l] .set_title('Chernoff entropy vs JS divergence')

(continues on next page)

380 Chapter 21. Statistical Divergence Measures

Intermediate Quantitative Economics with Python

plt.tight_layout ()

(continued from previous page)

plt.show ()
JS divergence vs KL divergence Chernoff entropy vs JS divergence
o ®
0.20
0.4
. o

0.15 4 03] ®
Y g
3 3 o
] =
2 0101 ° o 2 0.2
W L o
- s

®
e e
0.05 el 0.1
°
°®
8 o®
ooo{ @ 00{ @
O.IO 0.‘5 1:0 l:S 2.‘0 2.‘5 0.60 0.65 0.‘1() 0.‘15 0.‘20
KL divergence KL(f, g) Js divergence
We now generate plots illustrating how overlap visually diminishes as divergence measures increase.
param_grid = [

(1, 1), (1, 1)),

(1, 1), (1.5, 1.2)),

(1, 1), (2, 1.5)),

(1, 1), (3, 1.2)),

(¢, 1), (0.3, 0.3)),

(1, 1), (5, 1))

]
381

21.7. Comparing divergence measures

Intermediate Quantitative Economics with Python

KL(f,g)=0.000, J5=0.000, C=0.000 KL(f,g)=0.059, J5=0.012, C=0.013
1.0
12 \
0.8 104
0.8 4
05 - — f~Beta(L,1) — f~Bem(lLl)
—— g ~ Beta(1l,1) 0.6 —— g ~ Beta(1.5,1.2)
0.4 overlap overlap
0.4 4
0.2 4
0.2
0.04 0.0
0o 02 04 06 08 10 00 02 0a 06 o8 10
KL(f,g)=0.178, J$=0.031, C=0.034 KL(f,g)=0.759, JS=0.098, C=0.121
14 —